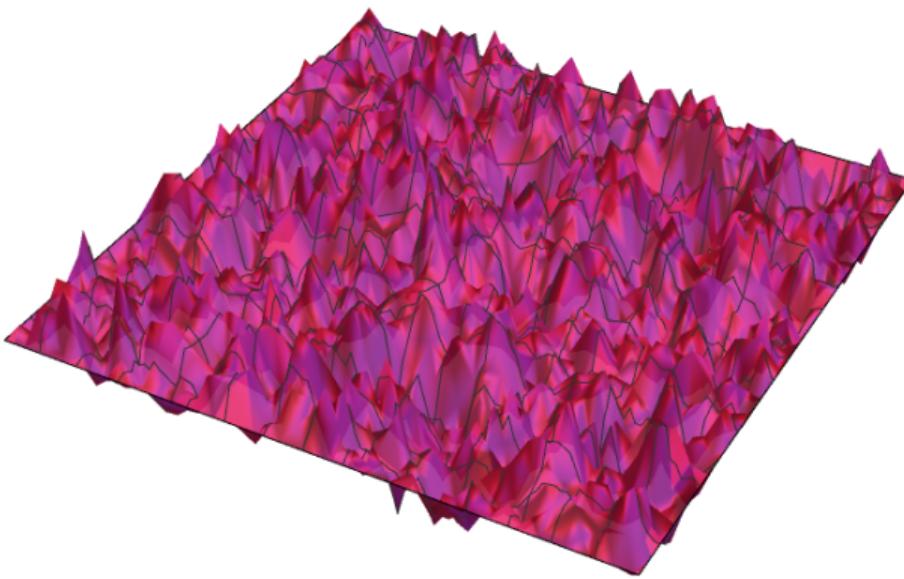


Transformations of the Gaussian Free Field in Arbitrary Dimensions

Louis Meunier Supervised by Prof. Linan Chen

September 10, 2025

The Gaussian Free Field: Pretty Picture



Informally, the Gaussian Free Field (GFF) in \mathbb{R}^d is a random surface with a certain pointwise distribution. In $d = 1$, this is the usual Brownian motion on \mathbb{R} .

The Gaussian Free Field: Definitions

- Let $(H, (\cdot, \cdot)_{H^1})$ to be the completion of $C_0^\infty(\mathbb{R}^d)$ under

$$(f, g)_{H^p} = \int_{\mathbb{R}^d} (I - \Delta)^p f \cdot g \, dx = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} (1 + |\xi|^2)^p \hat{f}(\xi) \cdot \overline{\hat{g}}(\xi) \, d\xi.$$

- Take $\alpha_n \sim^{\text{i.i.d.}} \mathcal{N}(0, 1)$ standard Gaussian variables and $\{h_n\}$ orthonormal basis.
- Define the series

$$h = \sum_n \alpha_n h_n.$$

Theorem

$$\mathbb{E}[h(x)h(y)] \sim \begin{cases} O(\log|x - y|) & d = 2, \\ O(|x - y|^{2-d}) & d \geq 3 \end{cases}, \text{ hence, } h \text{ is ill-defined pointwise.}$$

Despite this, we can still interpret h in a "**distributional sense**".

Ball Average, $d \geq 3$

We can look at how h behaves when integrated over certain sets. Fix a radius $t > 0$ and position $x \in \mathbb{R}^d$. Let $h_{x,t}$ be the average of h over $B(x, t)$.

Theorem

$$\mathbb{E}[h_{x,t}^2] = C_d t^{-d} \int_0^\infty \frac{1}{1+\lambda^2} \frac{1}{\lambda} J_{d/2}^2(t\lambda) d\lambda \sim O_x(t^{2-d})$$

As we shrink our ball, the average of our field over said ball grows polynomially, as we expect. In short, this is a "good averaging" (we don't pick up more growth than the natural covariance).

Images of Ball Averages

Ball averages are **convenient** - radially symmetric. We expect to get similar behaviour when averaging over other sets.

Theorem (Hu, Miller, Peres)

In $d = 2$, if ψ a conformal map, then the difference in the average of h over $B(x, t)$ and the image of $B(x, t)$ under ψ , appropriately rescaled, converges to zero as $t \rightarrow 0^+$.

The case for $d \geq 3$ is not known in general, but we have established:

Theorem

If ψ a linear diffeomorphism of \mathbb{R}^d , then the ball average and "transformed" ball average under ψ at x are incomparable unless ψ a multiple of a rotation matrix.

In practice, we need to look at properties of Fourier transforms of certain measures.

Future Directions

Conjecture

The ball and transformed ball averages are incomparable unless ψ locally (first-order) a multiple of a rotation matrix everywhere, i.e.

$$J_\psi(x) \cdot J_\psi^\dagger(x) = c(x)I_d.$$

This would straightforwardly extend the result in $d = 2$.

Conjecture

The same result holds for the "spherical average", taken as the surface integral over $\partial B(x, t)$ normalized by the surface area of the t -radius ball.

The importance of this second result is that, probabilistically, it is far more convenient to work with the spherical rather than ball average. Analytically, the situation is far more subtle.