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Introduction

A conservation law of a differential equation 𝐹[𝑢] ..= 𝐹(𝑥; 𝑢𝑥 ; 𝑢𝑥𝑥 . . . ) = 0 is a function
𝜙[𝑢] that is identically constant on solutions on solutions to 𝐹, or equivalently

D𝑥𝜙[𝑢]
����
𝐹[𝑢]=0

= 0, (1)

where D𝑥 the total derivative in 𝑥. The study of conservation laws is ubiquitous in
the study of partial differential equations (PDEs). Conservation laws are useful in
the construction of stable discretizations of PDEs [WBN17] [WN18] and the study of
key geometric structures underlying many systems, just to name a few applications.

Theorem 1 ([Olv86]). Let 𝜙 be a conservation law of the system of differential
equations 𝐹[𝑢] = 0. Then, there exists a tuple 𝑄 = (𝑄1[𝑢], . . . , 𝑄ℓ [𝑢]) such that

Div(𝜙) = 𝑄 · 𝐹. (2)

𝑄 is called the multiplier or characteristic of the conservation law 𝜙.

Hence, to find conservation laws (or more specifically, divergences of conserva-
tion laws), it suffices to seek multipliers 𝑄.

Theorem 2. Let
E =

∑
𝛼,𝐼

(−D𝑥)𝐼
𝜕

𝜕𝑢𝛼
𝐼

(3)

be the Euler operator, where 𝛼 iterates over the dependent variables and the multiin-
dex 𝐼 iterates over the independent variables. Then,

E(𝐹[𝑢]) = 0 ⇐⇒ ∃𝑃[𝑢] s.t. 𝐹 = Div𝑃. (4)

In other words, the kernel of the Euler operator is characterized precisely by diver-
gence expressions.

Combining these two theorems gives rise to a systematic method for finding
conservation laws. For a differential equation 𝐹 = 0, allowing𝑄 to be some arbitrary
“multiplier” (for which we must in general specify a priori how many derivatives of
𝑢 it depends upon), we aim to solve the differential equation

E(𝑄 · 𝐹) = 0. (5)

Upon solving for such a𝑄,𝑄 ·𝐹 gives the divergence form of a particular conservation
law of the system 𝐹 = 0 (solving for the conservation law itself is its own issue, see
for instance [Wan10]).
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Clearly, the Euler operator is quite important to the study of conservation laws,
and there are many ways that it arises naturally, for instance in the computation
of extrema for variational problems. Another, more intrinsic manner that it arises
is as the composition of two operators in a particular algebraic structure called the
variational bicomplex. The bicomplex is a, aptly named, double chain complex of
differential forms defined over the jet bundle of a smooth manifold. It provides
an abstract, geometric framework to study differential equations, and in particular,
variational principles. Exactness of this chain complex leads to the aforementioned
characterization of the Euler operator, as well as other important results such as
a necessary and sufficient condition for a differential equation being the Euler-
Lagrange equations for a given functional. See [And9s] for the standard reference.

In this paper, we explore a construction of an analogous chain complex based
on an algebra of difference functions defined over a discrete space, 𝑋, which we
call our “lattice”. These difference functions are ultimately meant to represent finite
difference approximations of differential equations, but we avoid making this as-
sumption throughout for the sake of generality. That being said, the intention with
this construction is to explore connections between the conservation laws of differ-
ential equations and their associated difference equation approximations. Seeing
as the variational bicomplex is the natural algebraic structure to study these in the
smooth world, it only makes sense to attempt to study these in a discrete analog of
the variational bicomplex.

In section 1, we construct the discrete variational bicomplex from the ground
up, synthesizing ideas from [HM04], [Zha10], and [And9s] to develop the most
appropriate structure. We discuss the differences and similarities between what is
possible to imitate from the smooth world, and what we may only approximate,
carefully. We finally discuss how a discrete analog of the Euler operator arises
naturally from the complex, as well as develop a novel generalization in the case of
arbitrary difference operators on the complex.

In section 2, we discuss exactness of the complex. Many of these theorems
come for free by comparison with the exactness of the de Rham complex, but those
involving operations on the lattice are not so clear. In particular, we prove in the-
orem 9 exactness of the horizontal complex, arguably the least transparent aspect of
the construction, but also vital for the characterization of the Euler operator. To the
best knowledge of the author, this proof is novel. The theorem was first claimed in
[HM04] without proof, then argued against in [Zha10] for the proposed homotopy
operators not being appropriate. We establish the theorem here.

Finally, in section 3, we discuss what is missing from the theory we’ve developed
so far. In particular, we’d like to make a connection between the discrete and smooth
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variational bicomplexes. The ultimate goal would be to be able to define projection
maps from the smooth to the discrete and related interpolation maps in the opposite
direction that commute with the operations on the respective complexes, leading to a
notion of consistency. An intermediary goal is to discuss some notion of convergence
of the discrete to the smooth, an idea that was briefly discussed in [Hyd01] in the
specific case of the discrete versus smooth Euler operators. We also discuss other
future directions, such as establishing exactness of the inner rows of the complex, a
result which has been discussed but never claimed and especially never proven, and
potential applications of our results to understanding conservative discretizations
of differential equations.

1 Construction of the Discrete Variational Bicomplex

In this section, we construct our underlying algebra of functions on the lattice, and
discuss the relationships between our construction and the standard analog in the
smooth theory [And9s]. We begin by formalizing what we mean when we speak of
“difference functions” as an analog to differential equations. We then demonstrate
how we construct a chain complex on the dependent (vertical, 𝑈) and independent
(horizontal, 𝑋) variables by defining particular modules over rings of functions
on the respective spaces and taking their subsequent exterior powers. Then, we
construct the entire bicomplex of interest by taking the direct product of these two
complexes, and adjoin the variational complex through the consideration of certain
cohomological spaces. Finally, we show how this construction naturally gives rise to
a discrete analog of the Euler operator discussed in the introduction.

1.1 Functions on a Lattice

Fix positive integers 𝑝 and 𝑞 denoting the dimension of our independent, dependent
variables respectively. Let 𝑋 ..= Z𝑝 , with coordinates n ..= (𝑛1, . . . , 𝑛𝑝) and fix a
real-valued vector space 𝑈 � R𝑞 , with coordinates (𝑢ℓ ∈ R : ℓ = 1, . . . , 𝑞). Denote
the shift operator on 𝑋 by

𝑆𝑘𝑖 : 𝑋 → 𝑋, n ↦→ n + 𝑘 · 𝑒𝑖 , 𝑖 = 1, . . . , 𝑝, 𝑘 ∈ Z (6)

and 𝑒𝑖 ∈ 𝑋 the vector of all zeroes except the 𝑖-th coordinate equal to 1. More
concisely, define for any 𝐾 = (𝑘1, . . . , 𝑘𝑝) ∈ Z𝑝 the shift operator

𝑆𝐾 ..= 𝑆
𝑘1
1 ◦ · · · ◦ 𝑆𝑘𝑝𝑝 : 𝑋 → 𝑋, n ↦→ n + 𝐾. (7)

Define the space of real-valued functions on 𝑋 by

𝒜(𝑋) ..= { 𝑓 : 𝑋 → R}, (8)

and extend the shift operators to 𝒜(𝑋) by precomposition, namely

𝑆𝐾 : 𝒜(𝑋) → 𝒜(𝑋), 𝑓 ↦→ 𝑆𝐾 𝑓 , (𝑆𝐾 𝑓 )(n) ..= 𝑓 (𝑆𝐾n). (9)
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Further, we define the “length” of an element n = (𝑛1, . . . , 𝑛𝑝) ∈ 𝑋 by

|n| ..= |𝑛1| + · · · + |𝑛𝑝|. (10)

Define, for any positive integer 𝑘,

𝑋𝑘
..= {n ∈ 𝑋 : |n| ≤ 𝑘}, (11)

which should be viewed as an analog of a closed ball centered at the origin in R𝑝 .

1.2 Discrete Jet Space

In the smooth formulation, differential equations are viewed as functions on jets
of smooth functions of a fibered manifold 𝜋 : 𝐸 → 𝑀, where 𝐸, 𝑀 are 𝑝 + 𝑞, 𝑝
dimensional smooth manifolds respectively. For instance, the equation

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡), 𝑥 ∈ R, 𝑡 > 0 (12)

can be viewed as the function

𝐹[𝑥, 𝑡; 𝑢𝑥 , 𝑢𝑡 ; 𝑢𝑥𝑥 , 𝑢𝑥𝑡 , 𝑢𝑡𝑡] = 𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) (13)

defined on 𝐽∞(𝐸) where 𝜋 : 𝐸 → 𝑀, 𝐸 = R×R+×R, 𝑀 = R×R+. We denote general
functions on the jet space

𝐹[𝑢] ..= 𝐹[𝑥1, . . . , 𝑥𝑛 ; 𝜕𝑥𝑖𝑢; 𝜕2
𝑥 𝑗
𝑢; . . . ]. (14)

In our construction of the discrete analog, we’ll consider the trivial bundle 𝜋 :
R𝑝+𝑞 → R𝑝 , as generalizing to arbitrary manifolds is not clear as of yet.

We consider the analogous “discrete fibered space”

𝜋 : 𝑋 ×𝑈 → 𝑋, (n, u) ↦→ n. (15)

For any positive integer 𝑘 ≥ 0, define the space𝑈 𝑘 ..= {(𝑢ℓ ) : ℓ ∈ 𝑋𝑘 , 𝑢ℓ ∈ 𝑈}, and the
𝑘-discrete jet spaces 𝐽 𝑘 ..= 𝑋 ×𝑈 𝑘 , with trivial projections onto the second coordinate

𝜋𝑘 : 𝐽 𝑘 → 𝑋. (16)

This induces projections for 1 ≤ 𝑗 ≤ 𝑘

𝜋𝑘𝑗 : 𝐽 𝑘 → 𝐽 𝑗 (17)

given by truncation of the first coordinates outside of𝑈 𝑗 . Let

𝒜(𝑈 𝑘) ..= 𝐶∞(𝑈 𝑘 ,R) (18)
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be the space of smooth real-valued functions on𝑈 𝑘 for every 𝑘 ≥ 1.

Then, define for every positive integer 𝑘 ≥ 1,

𝒜(𝐽 𝑘) ..= 𝒜(𝑋) ⊗ 𝒜(𝑈 𝑘). (19)

There are then natural projections 𝒜(𝐽 𝑘) → 𝒜(𝐽 𝑗) for any 𝑗 ≤ 𝑘 induced by those
discussed above. We then finally define our space of functions on the (discrete) jet
space by

𝒜(𝐽) ..= limind𝑘→∞𝒜(𝐽 𝑘). (20)

We remark that this algebra of functions is the same as the “finite order” algebra of
functions Zharinov considers in his paper [Zha10], which he denotes 𝒜fin(𝐽). The
characterizing quality of this algebra is the notion of a “global order”. Namely, for
any function 𝑓 (𝑢, 𝑘) ∈ 𝒜(𝐽), 𝑓 (𝑢, 𝑥) lives in 𝒜(𝐽 𝑘) for some sufficiently large 𝑘, and
thus 𝑓 vanishes outside of 𝑋 ×𝑈 𝑘 , for every input 𝑥.

We could have instead taken a limit earlier in our construction and defined
instead 𝒜(𝑈) = limind𝑘→∞𝒜(𝑈 𝑘), then defined our full function space as 𝒜(𝑋) ⊗
𝒜(𝑈). This algebra does not have the same global order property, and while for each
input 𝑥 a function has finite order, there is certainly no guarantee of a global order.
This difference may seem subtle, but as shown in [Zha10], this latter choice leads
to a completely trivial variational calculus on this space of functions since there is
essentially no relationship between the independent and dependent variables and
thus the complex can be “split” completely. Thus, we will for the remainder consider
the algebra 𝒜(𝐽), which as we will show admits a nontrivial variational component.

We summarize the discrete, smooth analogs as follows in table 1.

Smooth Discrete
𝜋 : 𝐸 → 𝑀 𝜋 : 𝑋 ×𝑈 → 𝑋

𝜋𝑘 : 𝐽 𝑘(𝐸) → 𝑀 𝜋𝑘 : 𝐽 𝑘 → 𝑋

𝜋𝑘
𝑗

: 𝐽 𝑘(𝐸) → 𝐽 𝑗(𝐸) 𝜋𝑘
𝑗

: 𝐽 𝑘 → 𝐽 𝑗

Table 1: Summary of smooth, discrete analogous structures.

1.3 The Exterior Algebra

We have no differential structure in the discrete case, and so the construction of
a discrete variational theory in the same language of the smooth world isn’t obvi-
ous. However, with the correspondence between vector fields and derivations on a
manifold in mind, we attempt to replicate the construction of an exterior algebra by
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considering a module over the algebra of functions defined on our discrete space 𝑋,
and defining our exterior algebra on top of this space, and its algebraic dual.

As in the smooth case, we can separately consider the exterior algebra over just
the discrete space 𝑋 (analogous to the de Rham complex), and that over the space of
dependent variables 𝑈 . From there, we can derive the full bicomplex by tensoring
these spaces together appropriately. We largely follow the construction of [Zha10].

1.4 The Vertical Complex

We consider first the exterior algebra over𝑈 . Let

𝒟(𝑈) ..= Der(𝒜(𝑈)) (21)

be the 𝒜(𝑈)-module of derivations of 𝒜(𝑈), with standard basis given by {𝜕𝑢𝛼
ℓ

:
ℓ ∈ 𝑋, 𝛼 = 1, . . . , 𝑞}. Let 𝒟∗(𝑈) be the dual module with dual basis given by
d𝑢𝛽

𝑘
: 𝑘 ∈ 𝑋, 𝛽 = 1, . . . , 𝛽 where d𝑢𝛽

𝑘
, 𝜕𝑢𝛼

ℓ
= 𝛿ℓ

𝑘
𝛿𝛼𝛽 . For 𝑘 ≥ 1 let

Ω𝑘(𝑈) ..=
∧𝑘

𝒜(𝑈)𝒟∗(𝑈), (22)

the 𝑘th exterior power of the module 𝒟∗(𝑈). A typical element 𝜔 ∈ Ω𝑘(𝑈) is then
of the form

𝜔 =

∑
(ℓ1 ,...,ℓ𝑘)∈𝑋 𝑘

(𝛼1 ,...,𝛼𝑘)∈{1,...,𝑞}𝑘

𝜔𝛼1 ,...,𝛼𝑘
ℓ1 ,...,ℓ𝑘

d𝑢𝛼1
ℓ1

∧ · · · ∧ d𝑢𝛼𝑘
ℓ𝑘
, 𝜔𝛼1 ,...,𝛼𝑘

ℓ1 ,...,ℓ𝑘
∈ 𝒜(𝑈). (23)

We denote the entire exterior algebra by

Ω(𝑈) ..=
⊕
𝑘≥1

Ω𝑘(𝑈). (24)

The vertical differential is then defined as the standard differential on the (now infinite
dimensional) space with coordinates 𝑢𝛼

ℓ
. To be precise, given 𝜔 ∈ Ω𝑘(𝑈), the vertical

differential d𝑉 : Ω𝑘(𝑈) → Ω𝑘+1(𝑈) is given

d𝑉𝜔 =

∑
𝛼,𝐼

𝜕

𝜕𝑢𝛼
𝐼

𝜔 ∧ d𝑢𝛼
𝐼 , (25)

where the 𝜕
𝜕𝑢𝛼

𝐼
should be viewed as acting coefficient-wise on 𝜔. Because each of

the coefficient functions on 𝜔 have at most finite dependence on the variables of the
form 𝑢𝛼

𝐼
, there are no issues with taking this formally infinite sum.

Its easy to see that d2
𝑉

= 0, so {Ω𝑘(𝑈), d𝑉} defines a complex. Indeed, Ω𝑘(𝑈)
is really just the de Rham complex in variables 𝑢𝛼

𝐼
, namely an infinite dimensional

space.
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1.5 The Horizontal Complex

In the𝑈 variables, despite lacking real differentiable structure, we had a clear analog
with the space of derivations. In the 𝑋 space, however, no such “natural” construc-
tion exists. Instead, we aim to imitate the construction through a somewhat artificial
yet representative differentiation counterpart.

We need to define, for 𝜇 = 1, . . . , 𝑝, operators Δ𝜇 : 𝑋 → 𝑋, imitating differentia-
tion in the 𝑥 coordinate. In previous literature, the only considered operators have
been the forward difference given by Δ𝜇 = 𝑆𝑒𝜇 − id. However, here we allow general
difference operators of the form

Δ𝜇 =

∑
𝐼∈ℐ (𝜇)

𝑐
𝜇
𝐼
𝑆𝐼 , (26)

where ℐ (𝜇) a finite index set of 𝑝-tuples 𝐼 ∈ 𝑋 and 𝑐𝜇
𝐼
∈ R. The only other condition

we impose on the operators is of mutual commutation, namely

Δ𝜇 ◦ Δ𝜈 = Δ𝜈 ◦ Δ𝜇, ∀1 ≤ 𝜇, 𝜈 ≤ 𝑝, (27)

which is crucial for ensuring the complex we build atop these operators obeys the
relation d2

𝐻
= 0, as we will see to follow.

Define then the free 𝒜(𝑋)-module spanned by {Δ𝜇 : 𝜇 = 1, . . . , 𝑝} by

𝒟(𝑋) ..=


𝑝∑

𝜇=1
𝑓𝜇Δ𝜇 : 𝑓𝜇 ∈ 𝒜(𝑋)

 ⊂ End(𝒜(𝑋)). (28)

We then consider the dual module spanned by d𝑥𝜈, where d𝑥𝜈(Δ𝜇) = 𝛿
𝜇
𝜈 ,

𝒟∗(𝑋) =
{

𝑝∑
𝜈=1

𝑓𝜈d𝑥𝜈 : 𝑓𝜈 ∈ 𝒜(𝑋)
}
. (29)

For 0 ≤ 𝑗 ≤ 𝑝, define
Ω𝑗(𝑋) ..=

∧𝑗

𝒜(𝑋)𝒟
∗(𝑋), (30)

and denote the entire exterior algebra

Ω(𝑋) =
⊕
0≤ 𝑗≤𝑝

Ω𝑗(𝑋). (31)

To define operations on the bicomplex, we first extend shift operators to Ω(𝑋) by
acting coefficient-wise, namely if 𝜔 =

∑
𝐼 𝜔𝐼d𝑥𝐼 ∈ Ω(𝑋) where d𝑥𝐼 ..= d𝑥𝑖1 ∧· · ·∧d𝑥𝑖 𝑗 ,

then
𝑆𝐾𝜔𝐼

..=
∑
𝐼

(𝑆𝐾𝜔𝐼)d𝑥𝐼 . (32)
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Define too for 𝜇 = 1, . . . , 𝑝,

𝜀𝜇 : Ω𝑗(𝑋) → Ω𝑗+1(𝑋),
∑
𝐼

𝜔𝐼d𝑥𝐼 ∈ Ω(𝑋) ↦→ d𝑥𝜇 ∧ 𝜔. (33)

With this, we can define the exterior horizontal derivative by summing the composition
of these operators over 𝜇,

d𝐻 : Ω𝑗(𝑋) → Ω𝑗+1(𝑋), d𝐻 =

𝑝∑
𝜇=1

𝜀𝜇 ◦ Δ𝜇. (34)

In particular, we have the following:

Theorem 3. d𝐻 is a linear map that squares to zero.

Proof. The linearity follows from the linearity of the wedge and shift operators. To see
that d2

𝐻
= 0, we compute directly. Supposing 𝜔 ∈ Ω𝑟(𝑋) of the form 𝜔 =

∑
𝐼 𝜔𝐼d𝑥𝐼 ,

then

d𝐻𝜔 =

∑
𝜇

∑
𝐼

Δ𝜇(𝜔𝐼)d𝑥𝐼 ∧ d𝑥𝜇, (35)

so

d2
𝐻𝜔 =

∑
𝜈≠𝜇

∑
𝐼

Δ𝜈(Δ𝜇(𝜔𝐼)) ∧ d𝑥𝐼 ∧ d𝑥𝜇 ∧ d𝑥𝜈 . (36)

We have Δ𝜈 ◦Δ𝜇 = Δ𝜇 ◦Δ𝜈 by construction and that d𝑥𝜇∧d𝑥𝜈 = −d𝑥𝜈 ∧d𝑥𝜇, so each
term in this summation has a corresponding negative canceling perfectly and hence
d2
𝐻
= 0. □

Hence, we have the discrete difference complex {Ω𝑗(𝑋), d𝐻}. Graphically,

0 𝑋 Ω0(𝑋) Ω1(𝑋) · · · Ω𝑝−1(𝑋) Ω𝑝(𝑋) 0,d𝐻 d𝐻 d𝐻 d𝐻 d𝐻

(37)
where the map 0 → 𝑋 is the trivial inclusion and the map 𝑋 → Ω0(𝑋) maps
constants to constant functions.

1.6 The Bicomplex

With the constructions of the vertical and horizontal complexes Ω(𝑈) and Ω(𝑋), we
may define the entire discrete variational bicomplex

Ω = Ω(𝐽) ..=
⊕
𝑘≥1

0≤ 𝑗≤𝑝

Ω𝑘,𝑗(𝐽) (38)
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where the 𝒜(𝐽)-modules are given

Ω𝑘,𝑗 = Ω𝑘,𝑗(𝐽) ..= Ω𝑘(𝑈) ∧R Ω𝑗(𝑋). (39)

We note that we do limit the underlying function space to𝒜(𝐽) as defined previously.
Operations on the algebras Ω(𝑋),Ω(𝑈) extend naturally to Ω. For operations on
Ω(𝑈), operations simply act invariantly on components from Ω(𝑋) (in particular,
one can view functions on 𝒜(𝐽), in the context of Ω(𝑈), as functions on 𝑈 with the
𝑋 variables acting as parameters). For operations on Ω(𝑋), we have

𝑆𝐼 𝑓 = 𝑓 ◦ 𝑆𝐼 , 𝑆𝐼d𝑢𝛼
𝐽 = d𝑢𝛼

𝐼+𝐽 , (40)

for any 𝑓 ∈ 𝒜(𝐽) and d𝑢𝛼
𝐼

vertical one-form.

Theorem 4. The necessary connecting relation,

d𝑉 ◦ d𝐻 + d𝐻 ◦ d𝑉 = 0, (41)

holds. Moreover, d2
𝑉
= d2

𝐻
= 0 still holds; in particular, {Ω𝑘,𝑗 ; d𝑉 , d𝐻} is a vertically

unbounded, horizontally bounded bicomplex.

Proof. The fact that d2
𝑉

= 0 is clear since differentiation in the vertical compo-
nents treats 𝑋 variables as parameters. d2

𝐻
= 0 requires additional proof, since

the shift operators also affect the vertical forms. Supposing 𝜔 ∈ Ω𝑟,𝑠 of the form
𝜔 =

∑
𝛼,𝐽 ,𝐼 𝜔

𝛼,𝐽
𝐼

d𝑢𝛼
𝐽
∧ d𝑥𝐼 , then

d𝐻𝜔 =

∑
𝜇

∑
𝛼,𝐽 ,𝐼

Δ𝜇(𝜔𝛼,𝐽
𝐼

d𝑢𝛼
𝐽 ) ∧ d𝑥𝐼 ∧ d𝑥𝜇, (42)

so

d2
𝐻𝜔 =

∑
𝜈≠𝜇

∑
𝛼,𝐽 ,𝐼

Δ𝜈(Δ𝜇(𝜔𝛼,𝐽
𝐼

d𝑢𝛼
𝐽 )) ∧ d𝑥𝐼 ∧ d𝑥𝜇 ∧ d𝑥𝜈 . (43)

By the same logic as in theorem 3, this entire expression is identically zero.

We show the proof for the connecting relation in the case 𝑝 = 𝑞 = 1 and 𝜔 ∈ Ω0,0

for notational simplicity and to demonstrate the crucial steps. By direct computation,
one finds

(d𝐻 ◦ d𝑉)(𝜔) = d𝐻(
∑
𝑖

𝜕𝜔

𝜕𝑢𝑖
d𝑢𝑖) (44)

=

∑
𝑖

∑
𝐼∈ℐ (1)

𝑆𝐼[ 𝜕𝜔
𝜕𝑢𝑖

d𝑢𝑖] ∧ d𝑥1 (45)

=

∑
𝑖

∑
𝐼∈ℐ (1)

𝑆𝐼[ 𝜕𝜔
𝜕𝑢𝑖

]d𝑢𝑖+𝐼 ∧ d𝑥1, (46)
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and similarly

(d𝑉 ◦ d𝐻)(𝜔) =
∑
𝑖

∑
𝐼∈ℐ

𝜕

𝜕𝑢𝑖
(𝑆𝐼𝜔)d𝑥1 ∧ d𝑢𝑖 . (47)

We can compare coefficients corresponding to d𝑢𝑖 ∧ d𝑥1, d𝑥1 ∧ d𝑢𝑖 in each of these
expressions respectively. In the first, coefficients are 𝑆𝐼 𝜕𝜔

𝜕𝑢𝑖−𝐼
, and in the second

𝜕
𝜕𝑢𝑖

(𝑆𝐼𝜔), which we find to be equal by the important relation

𝑆𝐼 ◦ 𝜕

𝜕𝑢𝑖
=

𝜕

𝜕𝑢𝑖+𝐼
◦ 𝑆𝐼 . (48)

This, combined with the fact that d𝑢𝑖+𝐼∧d𝑥1 = −d𝑥1∧d𝑢𝑖+𝐼 completes the proof. □

1.7 The Euler-Lagrange Complex

In order to speak of a discrete variational calculus, we need to extend our complex
slightly. We consider for every nonnegative integer 𝑘 the cohomology spaces

ℱ 𝑘 ..= Ω𝑘,𝑝/d𝐻Ω𝑘,𝑝−1. (49)

Namely, two (𝑘, 𝑝)-forms are equal in ℱ 𝑘 if and only if they differ by an exact form.
Such forms are typically called functional forms as they serve the role of functionals in
the theory of the calculus of variations. Denote 𝜋𝑘 : Ω𝑘,𝑝 → ℱ 𝑘 the natural quotient
map. Define the variational derivative by

𝛿 : ℱ 𝑘 → ℱ 𝑘+1, 𝛿 = 𝜋𝑘+1 ◦ d𝑉 ◦ (𝜋𝑘)−1. (50)

We immediately have the following theorem.

Theorem 5. 𝛿 as defined above is well-defined. In particular, 𝛿2 = 0.

Proof. We need to show that d𝑉 is zero on total horizontal forms, i.e. if 𝜔 = d𝐻𝜂,
then d𝑉𝜔 = 0, which is clear from direct computation. □

Thus, {ℱ 𝑘 , 𝛿} defines a complex. Combined with the bicomplex constructed in
the previous sections gives the entire discrete variational bicomplex, fig. 1. In particular,
the outer row, of especial importance, is typically called the Euler-Lagrange complex,
fig. 2.
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...
...

...
...

...

Ω2,0 Ω2,1 · · · Ω2,𝑝−1 Ω2,𝑝 ℱ 2

Ω1,0 Ω1,1 · · · Ω1,𝑝−1 Ω1,𝑝 ℱ 1

0 𝐽 Ω0,0 Ω0,1 · · · Ω0,𝑝−1 Ω0,𝑝 ℱ 0

0 𝑋 Ω0(𝑋) Ω1(𝑋) · · · Ω𝑝−1(𝑋) Ω𝑝(𝑋)

d𝑉
d𝐻

d𝑉
d𝐻 d𝐻

d𝑉
d𝐻

d𝑉

𝜋2

𝛿

d𝑉
d𝐻

d𝑉
d𝐻 d𝐻

d𝑉
d𝐻

d𝑉

𝜋1

𝛿

d𝑉
d𝐻

d𝑉
d𝐻 d𝐻

d𝑉
d𝐻

d𝑉

𝜋0

𝛿

d𝐻 d𝐻 d𝐻 d𝐻

Figure 1: The Discrete Variational Bicomplex

𝐽 Ω0,0 Ω0,1 · · · Ω0,𝑝−1 Ω0,𝑝 ℱ 0 ℱ 1 · · ·d𝐻 d𝐻 d𝐻 d𝐻 𝜋0 𝛿 𝛿

Figure 2: The Discrete Euler-Lagrange Complex
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1.7.1 The Euler Operator

Of particular interest is the map 𝛿 : ℱ 0 → ℱ 1. Denoting a horizontal top form by
d𝑥𝑇 , let 𝜔 = 𝑓 d𝑥𝑇 ∈ Ω0,𝑝 where 𝑓 ∈ 𝒜(𝐽). Computing the vertical differential for
such an expression, we find

d𝑉𝜔 =

∑
𝛼=1,...,𝑞
𝐼=(𝑖1 ,...,𝑖𝑝)

𝜕 𝑓

𝜕𝑢𝛼
𝐼

d𝑥𝑇 ∧ d𝑢𝛼
𝐼 (51)

=

∑
𝛼,𝐼

𝜕 𝑓

𝜕𝑢𝛼
𝐼

𝑆𝐼(d𝑥𝑇 ∧ d𝑢𝛼
0 ). (52)

Let’s assume for now that we’re working with our difference operators all being
forward differences, namely Δ𝜇 = 𝑆𝑒𝜇 − id for 𝜇 = 1, . . . , 𝑝. Then, notice that we have

d𝐻((𝑆−𝐼
𝜕 𝑓

𝜕𝑢𝛼
𝐼

)d𝑢𝛼
0 ) =

∑
𝜇

Δ𝜇(𝑆−𝐼
𝜕 𝑓

𝜕𝑢𝛼
𝐼

)d𝑢𝛼
0 ) ∧ d𝜇

𝐻
(53)

=

∑
𝜇

[
(𝑆𝑒𝜇−𝐼 𝜕 𝑓

𝜕𝑢𝛼
𝐼

)𝑆𝑒𝜇(d𝑢𝛼
0 ∧ d𝜇

𝐻
) − (𝑆−𝐼 𝜕 𝑓

𝜕𝑢𝛼
𝐼

)d𝑢𝛼
0 ∧ d𝜇

𝐻

]
. (54)

Passing to the quotient space ℱ 1, then the left-hand side of this expression is equiv-
alent to zero, and so∑

𝜇

[
(𝑆𝑒𝜇−𝐼 𝜕 𝑓

𝜕𝑢𝛼
𝐼

)𝑆𝑒𝜇(d𝑢𝛼
0 ∧ d𝜇

𝐻
)
]
=

∑
𝜇

[
(𝑆−𝐼 𝜕 𝑓

𝜕𝑢𝛼
𝐼

)d𝑢𝛼
0 ∧ d𝜇

𝐻

]
, modulo d𝐻 . (55)

Then, upon changing index of summation, the expression in eq. (52) may be rewritten
in terms of those on the left-hand side of eq. (55), yielding

𝛿𝜔 =

∑
𝛼,𝐼

(𝑆−𝐼 𝜕 𝑓
𝜕𝑢𝛼

𝐼

)d𝑢𝛼
0 ∧ d𝜇

𝐻
(56)

=

∑
𝛼

∑
𝐼

[
𝑆−𝐼

𝜕 𝑓

𝜕𝑢𝛼
𝐼

]
d𝑢𝛼

0 ∧ d𝜇
𝐻

(57)

=

∑
𝛼

E𝛼( 𝑓 )d𝑢𝛼
0 ∧ d𝜇

𝐻
, (58)

where we define the Euler operator for each 𝛼 = 1, . . . , 𝑞 by

E𝛼 : 𝒜(𝐽) → 𝒜(𝐽), 𝑓 ↦→
∑
𝐼

𝑆−𝐼
𝜕 𝑓

𝜕𝑢𝛼
𝐼

. (59)
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In particular, by passing to the quotient ℱ 1, we were able to effectively “mod out”
all of the dependence on vertical forms except for d𝑢𝛼

0 for each 𝛼 = 1, . . . , 𝑞. In other
words, the variational derivative of a form 𝜔 is determined by a single value for each
vertical dimension, given by E𝛼. One should note the similarities with the traditional
“smooth” Euler operator, under the identification of the total derivative with 𝑆−𝐼 .

In this section thus far, we’ve restricted our attention to forward difference oper-
ators, as is standard in the literature. In doing so, we’ve remarked that by modding
out by total difference d𝐻 , we can iteratively simplify the variational derivative of a
function to depend on a single vertical form. Heuristically, one can think about this
quotienting as a manner of associating shifts. Suppose for simplicity that 𝑝 = 𝑞 = 1.
If d𝐻 = 0, then we are in a sense saying that 𝑆 = id. This identification is what made
it possible to rewrite d𝑉𝜔 with the only vertical form being d𝑢𝛼

0 , since then

0 = Δd𝑢𝛼
0 = (𝑆 − id)d𝑢0 =⇒ d𝑢0 = d𝑢1 modulo d𝐻 . (60)

We generalize this type of association to more general Δ. We remain working with
𝑝 = 𝑞 = 1 for simplicity. Suppose

Δ =

𝑀∑
𝑖=1

𝑐𝑖𝑆
𝑠𝑖 , (61)

where 𝑐𝑖’s are nonzero constants, and the 𝑠𝑖’s are distinct shifts arranged such that
𝑠1 < 𝑠2 < · · · < 𝑠𝑀 . Working modulo d𝐻 and thus modulo Δ, we find

𝑆𝑠𝑀 =

𝑀−1∑
𝑖=1

− 𝑐𝑖

𝑐𝑀
𝑆𝑠𝑖 . (62)

Without loss of generality, we may assume that 𝑠1 = 0 and thus that 𝑠𝑖 ≥ 0 for every
𝑖 = 1, . . . , 𝑀 (namely, all of the shifts are positive), by composing both sides with
𝑆𝑠𝑖 if this isn’t the case. Define 𝑚 ..= 𝑠𝑀 − 𝑠𝑀−1 as the gap between the largest and
second largest shifts. Then, composing both sides with 𝑆𝑚 ,

𝑆𝑠𝑀+𝑚 =

𝑀−1∑
𝑖=1

− 𝑐𝑖

𝑐𝑀
𝑆𝑠𝑖+𝑚 (63)

=

𝑀−2∑
𝑖=1

− 𝑐𝑖

𝑐𝑀
𝑆𝑠𝑖+𝑚 − 𝑐𝑀−1

𝑐𝑀
𝑆𝑠𝑀 (64)

=

𝑀−2∑
𝑖=1

[
− 𝑐𝑖

𝑐𝑀
𝑆𝑠𝑖+𝑚

]
− 𝑐𝑀−1

𝑐𝑀

(
𝑀−1∑
𝑖=1

− 𝑐𝑖

𝑐𝑀
𝑆𝑠𝑖

)
(65)

=

𝑠𝑀+𝑚−1∑̂
𝑠=0

𝐶𝑠 · 𝑆𝑠 , (66)
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where 𝐶𝑠 are constants depending solely on the constants 𝑐𝑖 and the shift 𝑠, whose
precise form can be elucidated on inspection of the preceding formula. In short,
working modulo d𝐻 allows us to rewrite the shift 𝑆𝑠𝑀+𝑚 linearly in terms of lower
shifts. Arguing inductively, then, any such operator with shift higher than 𝑠𝑀 + 𝑚
can be then reduced in terms of shifts ranging between 0 and 𝑠𝑀 − 1. For general 𝑆𝑘 ,
let us denote by 𝐶𝑠(𝑘) for 𝑠 = 0, . . . , 𝑠𝑀 + 𝑚 − 1 the sequence of constants such that

𝑆𝑘 =

𝑠𝑀+𝑚−1∑̂
𝑠=0

𝐶𝑠(𝑘)𝑆𝑠 . (67)

Again, such constants can be found inductively. Since 𝑆𝑘+1 = 𝑆 ◦ 𝑆𝑘 , one finds the
recursive relationship

𝑆𝑘+1 =

𝑠𝑀+𝑚−1∑̂
𝑠=0

[
𝐶𝑠−1(𝑘) − 𝐶𝑠𝑀+𝑚−1(𝑘) ·

𝑐𝑠
𝑐𝑀

]
𝑆𝑠 , (68)

where the indexed constants are taking to be zero if no such index exists. Thus, we
find

𝐶𝑠(𝑘 + 1) = 𝐶𝑠−1(𝑘) − 𝐶𝑠𝑀+𝑚−1(𝑘)
𝑐𝑠
𝑐𝑀

, ∀𝑠 = 0, . . . , 𝑠𝑀 + 𝑚 − 1. (69)

One can then solve this for arbitrary 𝑘 ≥ 𝑠𝑀 + 𝑚.

Hence, repeating the argument from eq. (55), we find that for a form 𝜔 = 𝑓 d𝑥 ∈
Ω0,1,

𝛿𝜔 =

𝑠𝑀+𝑚−1∑̂
𝑠=0

𝑆𝑠

[∑
𝑖

𝐶𝑠(𝑖) · 𝑆−𝑖(
𝜕 𝑓

𝜕𝑢 𝑖
)
]

d𝑢𝑠 ∧ d𝑥 (70)

where the bracketed term can hence be viewed as a generalized Euler operator, deter-
mined solely by the particular Δ chosen. One readily verifies that the Euler operator
derived previously arises from this formula upon substitution of the appropriate
constants.

As in the smooth world, exactness of the Euler-Lagrange complex gives rise to
the precise characterization of the kernel of the Euler operator. We establish this
in the case of Δ being a forward difference operator, though the general case is still
open.

2 Exactness of the Bicomplex

We discuss now the exactness of the bicomplex. While this has been discussed in
several areas [Zha10], [HM04], [PH23], we remark on differences in the exposition
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presented here. In particular, the proof of the exactness of the horizontal complex
has, to the best of our knowledge, not been laid out explicitly before. While [Zha10]
presents a proof, it is over a far larger underlying algebra of functions than we have
used here which is impractical in application (indeed, it leads to a completely trivial
variational calculus). In particular, the functions in their paper do not have “global
finite order”, and the proof of the exactness of the horizontal complex relies crucially
on this fact. [Hyd01], using an algebra of functions more clearly associated with ours,
also state this theorem but without proof.

As in the rest of the literature, we present only proofs of the exactness of the
outer rows of the complex, and the variational complex. The exactness of the entire
bicomplex is still open. In general, proofs of the interior rows of the smooth bicom-
plex require the notion of “contact forms” on the underlying fibered manifold, a
notion that does not have a clear analog in the discrete case. In addition, throughout
the remainder of the paper we take our difference operators to simply be the forward
difference operators,

Δ𝜇 = 𝑆𝑒𝜇 − id, (71)
as the exactness of the complex has not yet been established in the general case.

Theorem 6 (Exactness of the Vertical Complexes). For every 𝑘 = 1, . . . , 𝑝, the un-
bounded vertical complex

0 −→ Ω0,𝑘 d𝑉−→ Ω1,𝑘 d𝑉−→ Ω2,𝑘 d𝑉−→ · · · (72)

is exact.

Proof. We follow the proof of [HM04], though it is standard. Define the (formally
infinite) “vector field”

v =

∑
𝛼,𝐼

𝑢𝛼
𝐼

𝜕

𝜕𝑢𝛼
𝐼

(73)

and the homotopy map

ℋ𝑣 : Ω𝑖+1,𝑘 → Ω𝑖 ,𝑘 , 𝜔 ↦→
∫ 1

0
v⌟𝜔[𝜆𝑢]d𝜆

𝜆
, (74)

where 𝜔[𝜆𝑢] denotes 𝜔 with each occurrence of a variable in 𝑢𝛽
𝐽

replaced with 𝜆 ·𝑢𝛽
𝐽
.

We claim
d𝑉ℋ𝑣 +ℋ𝑣d𝑉 = id. (75)

One will notice that this is the same homotopy map commonly used in the
proof of the exactness of the de Rham complex; indeed, the vertical complex is
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nothing more than the de Rham complex in variables 𝑢𝛼
𝐼
, with the lattice variables

acting as parameters. The infinite dimensionality of the underlying space may
seem concerning, but by construction each function in our underlying algebra 𝒜(𝐽)
relies on only finitely many variables in 𝑢𝛼

𝐽
and thus all summations are necessarily

finite. □

Theorem 7 (Exactness of the Variational Complex). The variational complex

0 −→ ℱ 0 𝛿−→ ℱ 1 𝛿−→ ℱ 2 𝛿−→ · · · (76)

is exact.

Proof. Since the spaces {ℱ 𝑠} are just quotients of the spaces {Ω𝑠,𝑝}, we can actu-
ally employ the homotopy operator from the proof of the exactness of the vertical
complex. □

Theorem 8 (Exactness of the Difference Complex). The difference complex

0 −→ Ω0(𝑋) d𝐻−→ Ω1(𝑋) d𝐻−→ · · · d𝐻−→ Ω𝑝(𝑋) d𝐻−→ 0 (77)

is exact.

Proof. This is the first theorem in which we must depart from the setting of the de
Rham complex on the variables 𝑢, as our operator d𝐻 cannot be realized as a genuine
differential as in the previous two cases. See [HM04] for the proof. We will need to
refer to the relevant homotopy operator later, which we will denote as ℋ𝑑. □

Theorem 9 (Exactness of the Horizontal Complex). The horizontal complex

0 −→ Ω0,0 d𝐻−→ Ω0,1 d𝐻−→ · · · d𝐻−→ Ω0,𝑝−1 d𝐻−→ Ω0,𝑝 d𝐻−→ 0 (78)

is exact.

Before we present the proof, we need a few lemmas and technical tools.

For two positive multiindices 𝐼 = (𝑖1, . . . , 𝑖𝑝), 𝐽 = (𝑗1, . . . , 𝑗𝑝), we write 𝐼 ⊆ 𝐽 if
𝑖𝑘 ≥ 𝑗𝑘 for every 𝑘 = 1, . . . , 𝑝. We also define the “size” of a multiindex by

♯𝐼 = 𝑖1 + · · · + 𝑖𝑝 (79)
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and define the binomial coefficient of 𝐼 and 𝐽 by(
𝐼

𝐽

)
..=

(
𝑖1
𝑗1

)
· · ·

(
𝑖𝑝

𝑗𝑝

)
. (80)

With this we define, for each 𝛼 = 1, . . . , 𝑞 and positive multiindex 𝐽, the higher Euler
operators

E𝐽𝛼 ..=
∑
𝐼⊃𝐽

(
𝐼

𝐽

)
𝑆−𝐼

𝜕

𝜕𝑢𝛼
𝐼

. (81)

Note that while each higher Euler operator an infinite sum, in practice only finitely
many terms will be nonzero.

We define too the notion of a horizontal interior product, an analog of the natural
interior product in the vertical complex in the horizontal component. For 𝜔 ∈ Ω0,𝑟 ,
where 𝑟 = 1, . . . , 𝑝, we define

I𝑢 ..=
∑

𝐼=(𝑖1 ,...,𝑖𝑝)

𝑞∑
𝛼=1

𝑝∑
𝑘=1

𝑖𝑘 + 1
𝑝 − 𝑟 + ♯𝐼 + 1

(𝑆 − id)𝐼(𝑢𝛼
0 E𝐼+𝑒𝑘𝛼 (𝜕𝑥𝑘⌟𝜔)), (82)

where (𝑆 − id)𝐼 = (𝑆 − id)𝑖1 ◦ · · · ◦ (𝑆 − id)𝑖𝑝 .

One should remark at this point the clear similarities in the definitions presented
thus far and those used in the proof of the same theorem in the smooth case, see for
instance [Olv86], Chapter 5.4. Indeed, the main difference is the exchange of smooth
differential operators (D in Olver) for our discrete difference operators (𝑆 − id).

Lemma 1. Let 𝐽 ≥ 𝐾 be positive multiindices in 𝑋. Then,

𝐽∑
𝐼⊃𝐾

(−1)♯𝐼−♯𝐾
(
𝐼

𝐾

) (
𝐽

𝐼

)
= 𝛿𝐽

𝐾
= 𝛿

𝑗1
𝑘1
· · · 𝛿 𝑗𝑝

𝑘𝑝
, (83)

where 𝛿𝑏𝑎 the Kronecker delta function, equal to 1 if 𝑎 = 𝑏, 0 otherwise.

Proof. This follows from direct computation. □

Lemma 2. Let 𝑓 ∈ 𝒜(𝐽). Then,∑
𝛼,𝐼

𝑢𝛼
𝐼

𝜕 𝑓

𝜕𝑢𝛼
𝐼

=

𝑞∑
𝛼=1

∑
𝐼

(𝑆 − id)𝐼𝑢𝛼
0 E𝐼𝛼( 𝑓 ). (84)
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Proof. We prove in the case 𝑞 = 1 since clearly this expression extends by linearity for
arbitrary 𝑞. Fix some multiindex 𝐽. The only terms in the right-hand side of eq. (84)
containing 𝜕

𝜕𝑢𝐽
will then be those for which 𝐼 ≤ 𝐽, namely

𝜎𝐽 ..=
∑
𝐼⊆𝐽

(𝑆 − id)𝐼𝑢0

(
𝐽

𝐼

)
𝑆−𝐽

𝜕

𝜕𝑢𝐽
(85)

=

∑
𝐼⊆𝐽

(∏
𝑘•

(−1)𝑖•−𝑘•
(
𝑖•
𝑘•

)
𝑆𝑘••

)
𝑢0

[(
𝐽

𝐼

)
𝑆−𝐽

𝜕

𝜕𝑢𝐽

]
, (86)

where the expansion in the second line comes from applying binomial expansion to
the (𝑆− id)𝐼 term. Fix some other multiindex 𝐾. The only terms in 𝜎𝐽 involving such
a 𝐾 will be those for which 𝐼 ⊇ 𝐾, namely

𝑠𝐾
..=

𝐽∑
𝐼=𝐾

(−1)♯𝐼−♯𝐾
(
𝐼

𝐾

) (
𝐽

𝐼

)
𝑆𝐾𝑢0𝑆

−𝐽 𝜕

𝜕𝑢𝐽
(87)

= 𝑢𝐾𝑆
𝐾−𝐽 𝜕

𝜕𝑢𝐽

𝐽∑
𝐼=𝐾

(−1)♯𝐼−♯𝐾
(
𝐼

𝐾

) (
𝐽

𝐼

)
(88)

= 𝑢𝐾𝑆
𝐾−𝐽 𝜕

𝜕𝑢𝐽
𝛿𝐽
𝐾
, (89)

where the last equality holds by lemma 1. We have then that

𝜎𝐽 =
𝐽∑

𝐾=𝐼

𝑠𝐾 (90)

=

𝐽∑
𝐾=𝐼

𝑢𝐾𝑆
𝐾−𝐽 𝜕

𝜕𝑢𝐽
𝛿𝐽
𝐾

(91)

= 𝑢𝐽
𝜕

𝜕𝑢𝐽
. (92)

So, we find that indeed∑
𝐼

(𝑆 − id)𝐼𝑢0
∑
𝐽⊇𝐼

(
𝐽

𝐼

)
𝑆−𝐽

𝜕

𝜕𝑢𝐽
=

∑
𝐽

𝜎𝐽 =
∑
𝐽

𝑢𝐽
𝜕

𝜕𝑢𝐽
, (93)

proving the lemma as needed. □

Lemma 3. For any 𝛼 = 1, . . . , 𝑞, index ℓ = 1, . . . , 𝑝 and multiindex 𝐼, we have

E𝐼𝛼 ◦ (𝑆1
ℓ − id) = E𝐼−𝑒ℓ𝛼 . (94)
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Proof. We prove in the case 𝑝 = 𝑞 = 1, with the general cases following easily since
the only effect of the composition in the lemma is on the independent variables, and
the shift 𝑆ℓ only has an effect on the ℓ -th component of the independent variables.
We have that

E𝑖(𝑆1) =
∑
𝑗≥𝑖

(
𝑗

𝑖

)
𝑆1−𝑗 𝜕

𝜕𝑢𝑗−1
(95)

=

∑
𝑗≥𝑖−1

(
𝑗 + 1
𝑖

)
𝑆−𝑗

𝜕

𝜕𝑢𝑗
(96)

=

∑
𝑗≥𝑖−1

(
𝑗

𝑖 − 1

)
𝑆−𝑗

𝜕

𝜕𝑢𝑗
+

∑
𝑗≥𝑖−1

(
𝑗

𝑖

)
𝑆−𝑗

𝜕

𝜕𝑢𝑗
(97)

= E𝑖−1 + E𝑖 . (98)

Thus,

E𝑖 ◦ (𝑆 − id) = E𝑖−1 ◦ 𝑆 − E𝑖 = E𝑖−1 + E𝑖 − E𝑖 = E𝑖−1. (99)

□

The following three lemmas are all standard properties of operations on chain
complexes, adapted to our notations. See for instance [Olv86] for the proofs.

Lemma 4. For any 𝑟-length multiindex 𝐾 where 1 ≤ 𝑟 ≤ 𝑝, we have
𝑝∑
𝑘=1

𝜕𝑥𝑘⌟(d𝑥𝑘 ∧ d𝑥𝐾) = (𝑝 − 𝑟)d𝑥𝐾 . (100)

Lemma 5. For any 𝜔 ∈ Ω0,𝑟 for 𝑟 = 0, . . . , 𝑝 and any index 𝑘 = 1, . . . , 𝑝,

𝜕𝑥𝑘⌟(d𝑥𝑘 ∧ 𝜔) = 𝜔 − d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔). (101)

Lemma 6. For any 𝜔 ∈ Ω0,𝑟 for 𝑟 = 0, . . . , 𝑝 and any indices 𝑘, ℓ = 1, . . . , 𝑝,

𝜕𝑥𝑘⌟(d𝑥ℓ ∧ 𝜔) = −d𝑥ℓ ∧ (𝜕𝑥𝑘⌟𝜔). (102)

Proof of Theorem 9. For the remainder of the proof, we fix some 𝜔 ∈ Ω0,𝑟 for 1 ≤ 𝑟 ≤
𝑝 − 1. We define the total homotopy operator

ℋℎ : Ω0,𝑟 → Ω0,𝑟−1, 𝜔 ↦→
∫ 1

0
I𝑢(𝜔)[𝜆𝑢0]

d𝜆
𝜆
, (103)
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where we use the notation I𝑢(𝜔)[𝜆𝑢0] to represent first evaluation of I𝑢 on 𝜔, then the
result evaluated at 𝜆𝑢0 (namely, each dependent variable 𝑢𝐼 is replaced with 𝜆 · 𝑢𝐼 ,
and the independent variables are left as given). We claim that

d𝐻ℋℎ(𝜔) + ℋℎ(d𝐻𝜔) = 𝜔 − 𝜔𝐻 , (104)

where 𝜔𝐻 defined by setting all 𝑢𝐽 ’s in 𝜔 to zero; in particular, 𝜔𝐻 naturally lives in
Ω𝑟(𝑋).

We have that, for any function 𝐹 ∈ 𝒜(𝐽),

d
d𝜆𝐹[𝜆𝑢] =

1
𝜆

∑
𝛼,𝐼

𝑢𝛼
𝐼

𝜕𝐹

𝜕𝑢𝛼
𝐼

[𝜆𝑢]. (105)

Integrating both sides with respect to 𝜆 from 0 to 1 and substituting the expression
from lemma 2,

𝐹 − 𝐹𝐻 =

∫ 1

0

∑
𝛼,𝐼

𝑢𝛼
𝐼

𝜕𝐹

𝜕𝑢𝛼
𝐼

[𝜆𝑢]d𝜆
𝜆

(106)

=

∫ 1

0

(∑
𝛼

∑
𝐼

(𝑆 − id)𝐼𝑢𝛼
0 E𝐼𝛼(𝑃)

)
[𝜆𝑢]d𝜆

𝜆
(107)

Supposing 𝜔 =
∑
𝐼 𝜔𝐼d𝑥𝐼 for 𝜔𝐼 ∈ 𝒜(𝐽), we may extend the above to 𝜔 by making

operations act coefficient-wise, namely we will write

𝜕𝜔

𝜕𝑢𝛼
𝐼

=

∑
𝐽

𝜕𝜔𝐽

𝜕𝑢𝛼
𝐼

d𝑥𝐼 . (108)

We would like to show that the bracketed integrand term in eq. (107) is equal to
d𝐻 ◦ I𝑢 + I𝑢 ◦ d𝐻 , evaluated on 𝜔. We inspect first the term I𝑢(d𝐻𝜔):

I𝑢(d𝐻𝜔) =
∑
𝛼,𝐼

𝑝∑
𝑘,ℓ=1

𝑖𝑘 + 1
𝑝 − 𝑟 + ♯𝐼

(𝑆 − id)𝐼
{
𝑢𝛼

0 E𝐼+𝑒𝑘𝛼

[
𝜕𝑥𝑘⌟(𝑆ℓ − id)(d𝑥ℓ ∧ 𝜔)

]}
(109)

=

∑
𝛼,𝐼

(𝑆 − id)𝐼
𝑝 − 𝑟 + ♯𝐼

𝑢𝛼
0

𝑝∑
𝑘,ℓ=1

(𝑖𝑘 + 1)E𝐼+𝑒𝑘𝛼

[
𝜕𝑥𝑘⌟(𝑆ℓ − id)(d𝑥ℓ ∧ 𝜔)

]
︸                                                 ︷︷                                                 ︸

..=𝜎

. (110)

We consider the two cases for the double summation 𝜎 = 𝜎𝑘=ℓ + 𝜎𝑘≠ℓ , depending on
whether or not 𝑘 = ℓ . When 𝑘 ≠ ℓ , we may apply lemma 6 and lemma 3 and the fact
that ⌟, 𝑆ℓ − id commute and notice that

E𝐼+𝑒ℓ𝛼 [𝜕𝑘𝑥⌟(𝑆ℓ − id)(d𝑥ℓ ∧ 𝜔)] = −E𝐼+𝑒ℓ−𝑒𝑘𝛼 [d𝑥ℓ ∧ 𝜕𝑥𝑘⌟𝜔]. (111)
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When 𝑘 = ℓ , we can apply lemma 3 again as well as the linearity of the higher Euler
operators:

𝜎𝑘=ℓ =

𝑝∑
𝑘=1

E𝐼𝛼[𝜕𝑥𝑘⌟(d𝑥𝑘 ∧ 𝜔)] +
𝑝∑
𝑘=1

𝑖𝑘E𝐼𝛼[𝜕𝑥𝑘⌟(d𝑥𝑘 ∧ 𝜔)] (112)

= E𝐼𝛼

[(
𝑝∑
𝑘=1

𝜕𝑥𝑘⌟(d𝑥𝑘 ∧ 𝜔)
)
+

𝑝∑
𝑘=1

𝑖𝑘

(
𝜕𝑥𝑘⌟(d𝑥𝑘 ∧ 𝜔)

)]
(113)

= E𝐼𝛼

[
(𝑝 − 𝑟)𝜔 + 𝜔

𝑝∑
𝑘=1

𝑖𝑘 −
𝑝∑
𝑘=1

𝑖𝑘(d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔))
]

(114)

= (𝑝 − 𝑟 + ♯𝐼)E𝐼𝛼(𝜔) −
𝑝∑
𝑘=1

𝑖𝑘E𝐼𝛼
[
d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔)

]
(115)

where in the second line we applied lemma 4 to the inner summation on the left and
lemma 5 to the right. Combining then 𝜎𝑘=ℓ + 𝜎𝑘≠ℓ , we find

𝜎 = (𝑝 − 𝑟 + ♯𝐼)E𝐼𝛼(𝜔) −
𝑝∑
𝑘=1

𝑖𝑘E𝐼𝛼(d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔)) −
𝑝∑

𝑘,ℓ=1
(𝑖𝑘 + 1)E𝐼+𝑒ℓ−𝑒𝑘𝛼 (d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔))

(116)

= (𝑝 − 𝑟 + ♯𝐼)E𝐼𝛼(𝜔) −
𝑝∑

𝑘,ℓ=1
(𝑖𝑘 + 1 − 𝛿𝑘ℓ )E

𝐼+𝑒ℓ−𝑒𝑙
𝛼 (d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔)). (117)

Hence, returning to our expression for I𝑢(d𝐻𝜔), we find

I𝑢(d𝐻𝜔) =
[∑
𝛼,𝐼

(𝑆 − id)𝐼𝑢𝛼
0 E𝐼𝛼(𝜔)

]
−

∑
𝛼,𝐼

𝑝∑
𝑘,ℓ=1

𝑖𝑘 + 1 − 𝛿𝑘
ℓ

𝑝 − 𝑟 + ♯𝐼
(𝑆 − id)𝐼𝑢𝛼

0 E𝐼+𝑒ℓ−𝑒𝑘𝛼 (d𝑥𝑘 ∧ (𝜕𝑥𝑘⌟𝜔))

(118)

=

[∑
𝛼,𝐼

(𝑆 − id)𝐼𝑢𝛼
0 E𝐼𝛼(𝜔)

]
− d𝐻 I𝑢(𝜔), (119)

where the identification in the last line follows from the change of index 𝐼 → 𝐼 − 𝑒ℓ .
So, we’ve shown then

I𝑢(d𝐻𝜔) + d𝐻 I𝑢(𝜔) =
∑
𝛼,𝐼

(𝑆 − id)𝐼𝑢𝛼
0 E𝐼𝛼(𝜔). (120)

This is precisely what we set out to prove, so all together, returning to eq. (106)
evaluated with 𝜔 in place of 𝐹, we have

𝜔 − 𝜔𝐻 =

∫ 1

0
[I𝑢(d𝐻𝜔) + d𝐻 I𝑢(𝜔)] [𝜆𝑢]

d𝜆
𝜆

(121)

= ℋℎ(d𝐻𝜔) + d𝐻ℋℎ(𝜔), (122)
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proving the claimed property of the operator ℋℎ .

To complete the proof of exactness, we need to find the “inverse image” of
𝜔𝐻 under d𝐻 . But since 𝜔𝐻 lives in Ω𝑟(𝑋), we may simply apply the difference
homotopy operatorℋ𝑑 from theorem 8 and, by linearity, complete the proof. Namely,
supposing 𝜔 is such that d𝐻𝜔 = 0, then

𝜔 = d𝐻(ℋℎ(𝜔) + ℋ𝑑(𝜔𝐻)) = d𝐻((ℋℎ +ℋ𝑑 ◦ 𝜋𝐻)(𝜔)). (123)

□

3 Notions of Convergence, Inner Exactness and Other Further Di-
rections

3.1 Convergence and the Relationship to the Smooth Bicomplex

Much of the original theory of the discrete variational bicomplex was developed by
Hydon and Mansfield in [HM04]. Their approach is much more applied than the
one we take here, with their underlying complex structure defined in a very formal,
symbolic way. While advantageous for their particular purposes, it makes it difficult
to make any meaningful association between the discrete and smooth bicomplexes.

Our approach, modeled largely after [Zha10], is more respectful of the original
categories of objects underlying the complex structure in the smooth case. For in-
stance, the difference complex {Ω𝑘(𝑋), d𝐻} is defined using the 𝑘-th exterior powers
of the dual of a module defined over the ring of functions on 𝑋. Other than the
fact that the underlying space 𝑋 is discrete, every other object defined here exists in
the smooth case; this approach maintains much more algebraic structure, by its very
construction. Hydon, Mansfield define the same structure by stating that their un-
derlying difference forms have certain desired properties; we inherit these properties
through deliberate definitions.

This being said, while our approach makes the relationship clearer between the
smooth and discrete complexes, it certainly does not make it transparent. Namely,
we would ultimately like to speak of some sense of convergence of the discrete
complex to the smooth. We present here our running concept of what this “sense”
could be, specifically in the lattice variables.

Suppose 𝑝 = 1. We can then restrict 𝒜(𝑋) to ℓ 2(R) of square-summable real-
valued sequences, for convenience. For sequences 𝑥•, 𝑦• ∈ ℓ2(R), denote the ℓ 2

norm

⟨𝑥•, 𝑦•⟩ =
∞∑

𝑖=−∞
𝑥𝑖𝑦𝑖 . (124)
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We immediately remark that by making this restriction, while we have no Leibniz
rule, we have an integration by parts-type property

⟨𝑥•,Δ𝑦•⟩ = −⟨Δ𝑥•, 𝑆𝑦•⟩, (125)

where we considerΔ = 𝑆−id the forward difference operator. Supposing we fix some
projection map 𝜋𝜀 : 𝐿2(R) → ℓ 2(R) and an interpolation map 𝜋∗

𝜀 : ℓ 2(R) → 𝐿2(R)
depending on some small parameter 𝜀, then given a function 𝐹 ∈ 𝐿2, we would like
to talk about the convergence of

∥(𝜋∗
𝜀 ◦ Δ ◦ 𝜋𝜀)(𝐹) − d𝐹∥2 (126)

as 𝜀 → 0+, where ∥·∥2 denotes the 𝐿2 norm. Namely, we would like to characterize
the admissible maps 𝜋𝜀, 𝜋∗

𝜀, and especially Δ, which would naturally have to be
defined with respect to one another, that would allow for eq. (126) to converge to
zero.

We also, for a full theory, need to discuss the convergence of differential forms,
and this is where the advantage of our construction is clearer. In the smooth case, a
differential form d𝑥 is a function on the space of vector fields defined on a manifold
𝑀, denoted 𝔛(𝑀), returning a 𝐶∞(𝑀) real-valued function. Alternatively, one can
view d𝑥 as an element of the algebraic dual of space of derivations of 𝐶∞(𝑀), which
is in a one-to-one correspondence with 𝔛(𝑀). Similarly, a discrete difference form
d𝑥𝜇 acts on the space of derivations of 𝒜(𝑋), 𝒟(𝑋), to return a real-valued function
on the lattice in 𝒜(𝑋).

Adopting the same notations for the projection, interpolation maps as before, we
say that the discrete difference form d𝑥𝜇 converges to a differential form d𝑥 if for
every vector field 𝑣 ∈ 𝔛(𝑀),

∥𝜋𝜀(⟨d𝑥𝜇,𝜋𝜀(𝑣)⟩) − ⟨d𝑥, 𝑣⟩∥2 → 0 (127)

as 𝜀 → 0+. This naturally extends, by 𝒜(𝑋)-linearity, to convergence of arbitrary
elements of𝒟∗(𝑋). Being able to characterize precisely when this convergence occurs
would certainly be a step forward, however, how to properly define 𝜋𝜀 ,𝜋∗

𝜀 is unclear.
See section 3.1 for a graphical summary of the maps we’ve discussed.

3.2 Exactness of the Inner Rows

As we remarked previously in section 2, exactness of the inner rows of the bicomplex,
fig. 1,/ have not been established. While for our purposes this is inconsequential as
it is the Euler-Lagrange complex, fig. 2, that is of real interest, the exactness of the
inner rows of the complex is worth investigating in the name of seeking a complete
analog to the smooth theory. While the other proofs of exactness mirrored quite
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𝐿2 𝐿2

ℓ 2 ℓ 2

d

𝜋𝜀 𝜋𝜀𝜋∗
𝜀

Δ

𝜋∗
𝜀

(a) Convergence of difference operators.

𝔛(𝑀) 𝐶∞(𝑀)

𝒟(𝑋) 𝒜(𝑋)

⟨d𝑥,·⟩

𝜋𝜀 𝜋𝜀𝜋∗
𝜀

⟨d𝐻 ,·⟩

𝜋∗
𝜀

(b) Convergence of difference forms.

Figure 3: Diagrams of relationship between smooth (top) and discrete (bottom)
horizontal operations.

closely those of the smooth bicomplex, the tools used in the proof of the inner rows
do not have clear associations in the discrete world. Namely, one makes use (see, for
instance, [And9s]) of contact forms, which are intrinsically defined with respect to a
differential structure on the underlying space, which as we’ve iterated many times,
simply does not exist in the discrete world.

How to define the discrete counterpart of a contact form is unclear, as [HM04]
has mentioned. Further, there is no obvious alternative approach to proving this
said exactness, and so this topic certainly requires further investigation.

3.3 Applications to Finite Difference Discretizations

[HDP06], [Hyd01] and [HM04] demonstrated how to calculate conservation laws
of difference equations using the Euler operator, following a methodology identical
to that discussed in the introduction, with obvious modifications. In particular,
[HM04] demonstrated how one can achieve a convergence result of the discrete
Euler operator to the smooth operator under an appropriate continuum limit. In
section 1.7.1, we demonstrated how to obtain generalized Euler operators suited to
arbitrary difference operators Δ. We would like to be able to make a statement about
the convergence of such operators to the genuine Euler operator as well. In particular,
we’d like to be able to compare the rates of convergence of the operators. Namely,
one should expect an Euler operator based on higher-order difference operators to
admit better approximations to genuine conservation laws. As is clear from the
complicated formula above, it is far from clear how to proceed in this direction.
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