
Stochastic Differential Equations
MATH574 Final Project - Lecture Notes
By Louis Meunier

We’ll be studying differential equations with some notion of “randomness”
included. In particular, we’ll aim to study equations of the form

d𝑁
d𝑡

= 𝑏(𝑡, 𝑁) + 𝜎(𝑡, 𝑁)𝑊𝑡,

where 𝑁  a function of time, and 𝑊𝑡 “noise”, time-dependent randomness. We’ll talk
about:
• What kind of object is 𝑊𝑡?
• What does a solution look like to such an equation?
• How do these equations differ or relate to analogous deterministic (non-random)

equations?

1 Probability

What is “𝑊𝑡”? How do we mathematically capture randomness? Here we’ll briefly
review some probability theory.

Definition 1 (Probability Space) :  Let Ω be a nonempty set (our set of possible
outcomes; we call it a sample space), and ℱ a collection of subsets of Ω (this is
our collection of events; we call it an event space), with the properties that
• Ω ∈ ℱ;
• 𝐸 ∈ ℱ ⇒ 𝐸𝑐 ∈ ℱ; and
• {𝐸𝑛 : 𝑛 ≥ 1} ⊆ ℱ ⇒ ⋃𝑛 𝐸𝑛 ∈ ℱ. Namely, ℱ a 𝜎-algebra of subsets of Ω. A

function

ℙ : ℱ → [0, 1],

is called a probability measure on ℱ if
• ℙ(Ω) = 1;
• if {𝐸𝑛 : 𝑛 ≥ 1} ⊆ ℱ a disjoint collection, then ℙ(⋃𝑛 𝐸𝑛) = ∑𝑛 ℙ(𝐸𝑛).

Then, the triple (Ω, ℱ, ℙ) is called a probability space.

This probability space is where we will be mainly working. You can think about ℱ as a set of
possible events following an “experiment”, and ℙ representing the likelihood of a certain event
happening.

We’d like a way to “measure” qualities of the experiment:
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Definition 2 (Random Variable) :  A random variable is neither random nor a
variable; it is a (Borel-measurable) function

𝑋 : ℱ → ℝ.

We are interested in the distribution of 𝑋; namely, given any set 𝐵 ∈ 𝔅ℝ, we write

ℙ(𝑋 ∈ 𝐵) ≔ ℙ({𝜔 ∈ Ω | 𝑋(𝜔) ∈ 𝐵});

this induces a probability measure on 𝔅ℝ given by 𝑄(𝐵) ≔ ℙ(𝑋 ∈ 𝐵) (we usually
never explicitly write 𝑄, and prefer the second).

How do we specify a random variable? There are many ways, but in any case we
must, for any Borel set 𝐵, specify the probability that 𝑋 ∈ 𝐵. Suppose 𝑋 takes values
in a finite or countable set 𝑆. Then, let

ℙ(𝑋 = 𝑘) = 𝑓(𝑘), 𝑘 ∈ 𝑆,

where 𝑓  is a function 𝑆 → [0, 1] with the property that ∑𝑘∈𝑆 𝑓(𝑘) = 1. Then, given
any subset 𝑆′ ⊆ 𝑆,

ℙ(𝑋 ∈ 𝑆′) = ∑
𝑘∈𝑆′

𝑓(𝑘).

The function 𝑓  is called the point mass function (pmf) of 𝑋; it completely specifies the
distribution of 𝑋. We define the cumulative distribution function (cdf) of 𝑋 to be, for
any 𝑥 ∈ ℝ,

𝐹(𝑥) ≔ ℙ(𝑋 ≤ 𝑥) = ∑
𝑘∈𝑆:𝑘≤𝑥

𝑓(𝑘).

Suppose next 𝑋 takes values in all of ℝ. We can define the cdf in the same manner;
assuming 𝐹  is (absolutely) continuous, then (by a strong version of the Fundamental
Theorem of Calculus) there exists a function 𝑓  such that

𝐹(𝑥) = ∫
𝑥

−∞
𝑓(𝑦) d𝑦,

for every 𝑥 ∈ ℝ. 𝑓  is called a probability density function (pdf).

Note the similarities between the pmf and pdf; the first is summed over, and the second is
integrated over, but each represent, in a way, the “point-mass probability” about a point; hence
our identical notations.
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Example 1 :

Discrete Continuous

𝑋 = 1 with prob. 𝑝, 0 with prob. 1 −
𝑝, where 𝑝 ∈ (0, 1); we say 𝑋 Bernoulli.

Let [𝑎, 𝑏] ⊆ ℝ and 𝑓(𝑥) = 1
𝑏−𝑎 ⋅ 𝟙[𝑎, 𝑏];

then, 𝐹(𝑥) = 𝑥−𝑎
𝑏−𝑎  if 𝑥 ∈ [𝑎, 𝑏] and zero

otherwise; we say 𝑋 uniform in [𝑎, 𝑏].

Let 𝑓(𝑘) = 𝑒−𝜆𝜆𝑘

𝑘!  for 𝑘 ∈ ℕ and 𝜆 > 0;
we say 𝑋 Poisson with parameter 𝜆.

Let 𝜇, 𝜎2 ∈ ℝ. Define 𝑓(𝑥) =
1√

2𝜋𝜎2 exp(−1
2(𝑥−𝜇

𝜎 )2). Then, if the
pdf of 𝑋 is given by 𝑓 , we say 𝑋
normal, and write 𝑋 ∼ 𝒩(𝜇, 𝜎2).

Definition 3 (Expected Value) :  The mean/expected value of a random variable 𝑋
is defined as it’s “average value” (if one exists). We denote

𝔼[𝑋] =
⎩{
⎨
{⎧∫

𝑆
𝑥𝑓(𝑥) d𝑥 if 𝑋 continuous

∑𝑥∈𝑆 𝑥𝑓(𝑥) if 𝑋 discrete
,

where 𝑆 = {𝑥 ∈ ℝ | 𝑓(𝑥) ≠ 0} the support of 𝑋. More generally, for 𝑘 ∈ ℕ, the 𝑘-
th moment of 𝑋 is defined as 𝔼[𝑋𝑘], where finite.

𝑋 need not have a finite mean. Consider the discrete random variable with 𝑋 = 𝑘 with
probability 6

𝜋2
1
𝑘2  for 𝑘 ∈ ℕ.

Given a probability space (Ω, ℱ, ℙ), we denote the space

𝐿2(ℙ) ≔ {𝑋 : ℱ → ℝ | 𝔼[𝑋2] < ∞}.

This is a Hilbert space equipped with the inner product 𝔼[𝑋𝑌 ] (namely, a complete
inner product space), which we won’t prove here but will use extensively in the
remaining parts.

Random variables are almost what we were looking for in our initial “noise”, 𝑊𝑡;
however, we need it to have some dependence on time as well. We address this with
the following definition.

Definition 4 (Stochastic Process) :  A stochastic process is a parametrized
collection of random variables {𝑋𝑡 : 𝑡 ∈ 𝑇}, where 𝑇  some index set.

For our purposes, we’ll usually have the stochastic process varying in “time”, and take 𝑇 =
[0, ∞).
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Example 2 (Random Walk):  Let 𝑇 = ℕ and

𝑌𝑡 =
⎩{
⎨
{⎧1 with probability 1

2

−1 with probability 1
2

and

𝑋𝑡 ≔ ∑
𝑡

𝑠=0
𝑌𝑠.

𝑋𝑡 is called a “random walk”; each 𝑌𝑠 represents a movement left/right along a
discrete lattice, and so 𝑋𝑡 represents the final “location”.

Example 3 (Poisson Process) :  Let 𝑇 = [0, ∞), 𝜆 > 0 and for each 𝑡 ∈ 𝑇 , 𝑋𝑡 be
Poisson distributed with parameter 𝜆𝑡. Then, {𝑋𝑡 : 𝑡 ∈ 𝑇} is called a Poisson point
process.

The process we’ll focus on is the following:

Definition 5 (Wiener Process/Brownian Motion):  A Wiener process, {𝐵𝑡 : 𝑡 ≥ 0},
is a stochastic process with the properties
1. 𝐵0 = 0;
2. the increments are independent, i.e. 𝐵𝑡+𝑠 − 𝐵𝑡, 𝐵𝑡′+𝑠′ − 𝐵𝑡′  are independent,

for every 𝑡, 𝑡′ and 𝑠, 𝑠′ ≥ 0;
3. the increments are normal, i.e. 𝐵𝑡+𝑠 − 𝐵𝑡 ∼ 𝒩(0, 𝑠) for every 𝑠 ≥ 0;
4. the map 𝑡 ↦ 𝐵𝑡 is continuous a.s.

This technical definition is fairly useless for any kind of application. We’ll briefly look
at alternative ways to characterize Brownian motion. Fix 𝑥 ∈ ℝ𝑛. For 𝑦 ∈ ℝ𝑛 and 𝑡 >
0, define
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𝜌(𝑡, 𝑥, 𝑦) ≔ (2𝜋𝑡)−𝑛/2 exp(−
|𝑥 − 𝑦|2

2𝑡
),

where |⋅| the usual Euclidean norm of ℝ𝑛. Then, for any set of times 0 ≤ 𝑡1 ≤ 𝑡2 ≤
⋯ ≤ 𝑡𝑘 and subsets 𝐹1, …, 𝐹𝑘 ⊆ ℝ𝑛, define the measure

𝜈𝑡1,…,𝑡𝑘
(𝐹1 × ⋯ × 𝐹𝑘) ≔ ∫

𝐹1×⋯×𝐹𝑘

𝜌(𝑡1, 𝑥, 𝑥𝑘)𝜌(𝑡2 − 𝑡1, 𝑥1, 𝑥2)⋯𝜌(𝑡𝑘 − 𝑡𝑘−1, 𝑥𝑘−1, 𝑥𝑘) d𝑥1⋯ d𝑥𝑘.

By Kolmogorov’s Extension Theorem, there exists a probability space (Ω, ℱ, ℙ𝑥) and
process {𝐵𝑡} such that

ℙ𝑥(𝐵𝑡1
∈ 𝐹1, …, 𝐵𝑡𝑘

∈ 𝐹𝑘) = 𝜈𝑡1,…,𝑡𝑘
(𝐹1 × ⋯ × 𝐹𝑘).

Such a process is called the “Brownian motion starting at 𝑥” (since, in particular,
ℙ𝑥(𝐵0 = 𝑥) = 1). This space is not unique by any means. However, we can always
pick one such that the paths 𝑡 ↦ 𝐵𝑡(𝜔) are continuous, and hence we may realize
Brownian motion as a random distribution on the space 𝐶([0, ∞); ℝ𝑛). In short, 𝐵𝑡

can be thought of as a random 𝑛-dimensional curve.

A more constructive, less probability-theoretic construction (and in particular, one
that is helpful in numerical simulations) can be given on a closed interval. Let {ℎ𝑛}
be an orthonormal basis for 𝐿2([0, 1]) and {𝛼𝑛} an independent sequence of normal
random variables with mean 0 and variance 1, i.e. 𝛼𝑛 ∼ 𝒩(0, 1). Then, define for 𝑡 ≥
0,

𝐵𝑡 ≔ ∑
𝑛

𝛼𝑛 ⋅ ∫
𝑡

0
ℎ𝑛(𝑠) d𝑠.

This is well-defined since 𝔼[𝛼𝑛] = 0. To be more specific, such a construction is a so-called
“Brownian Bridge”, where the endpoints are fixed.

Figure 1: A (simulated) instance of Brownian motion on the line using the
construction below.
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Yet another construction is as the limit of a random walk (this is my preferred way of
thinking about it). Let {𝑌𝑘 : 𝑘 ≥ 1} be an independent and identically distributed (iid)
sequence of random variables with ℙ(𝑌𝑘 = ±1) = 1

2 , and define for 𝑁 ≥ 1,

𝑋𝑁 ≔ ∑
𝑁

𝑘=1
𝑌𝑘.

By the Central Limit Theorem, 1√
𝑁

⋅ 𝑋𝑁 →
𝑑

𝒩(0, 1). Define

𝐵𝑁
𝑡 ≔

𝑋⌊𝑁𝑡⌋√
𝑁

, 𝐵𝑡 ≔ lim
𝑁→∞

𝐵𝑁
𝑡 .

Remark that in particular,

𝐵𝑁
𝑡 =

𝑋⌊𝑁𝑡⌋√
𝑁

=
√

𝑁𝑡
√

𝑁
⋅
𝑋⌊𝑁𝑡⌋√

𝑁𝑡
=

√
𝑡 ⋅

𝑋⌊𝑁𝑡⌋√
𝑁𝑡

→
𝑑 √

𝑡 ⋅ 𝒩(0, 1) = 𝒩(0, 𝑡).

With some difficult, one can prove the remaining properties of Brownian motion.

2 Itô Calculus

Using Brownian motion, we can start to develop (a version of) stochastic calculus.
Consider the “differential equation”

d𝑁
d𝑡

= (𝑟(𝑡) + "noise")𝑁.

If we treated this like an ODE, then, we would arrive at an integral equation of the
form

∫
1
𝑁

d𝑁 = ∫ 𝑟(𝑡) d𝑡 + ∫ "noise" d𝑡.

If we formalize “noise” with a stochastic process of some kind, then we need to a way
of “integrating” noise against time. In particular, let’s write 𝑊𝑡 in place of “noise”.
Then, the more general form of stochastic differential equation (SDE) we’d like to
analyze is the following,

d𝑋
d𝑡

= 𝑏(𝑡, 𝑋𝑡) + 𝜎(𝑡, 𝑋𝑡)𝑊𝑡. †

In general, we would like the following properties:
• 𝑊𝑡1

, 𝑊𝑡2
 are independent;

• 𝑊𝑡 is “stationary”, that is, the joint distribution of 𝑊𝑡1+𝑡, …, 𝑊𝑡𝑘+𝑡 is independent
of 𝑡;

• 𝔼[𝑊𝑡] = 0;
• 𝑊𝑡 has continuous paths.
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However, it turns out that these conditions are impossible to simultaneously satisfy!
We can, however, realize 𝑊𝑡 as a “generalized” process (called the “white noise
process”); namely, rather than being a stochastic process on the space of real-valued
functions on [0, ∞), we can realize it as a process on the space of tempered
distributions on [0, ∞). This is hard to do, so we’ll take a different approach.

To motivate this, consider a discretized version of †. For fixed time 𝑡, consider a
discrete partition 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 = 𝑡 up to time 𝑡. Then, † looks like

𝑋(𝑡𝑘+1) − 𝑋(𝑡𝑘) = 𝑏(𝑡𝑘, 𝑋(𝑡𝑘))Δ𝑡𝑘 + 𝜎(𝑡𝑘, 𝑋(𝑡𝑘))𝑊(𝑡𝑘)Δ𝑡𝑘,

where Δ𝑡𝑘 ≔ 𝑡𝑘+1 − 𝑡𝑘. Put 𝑋𝑘 ≔ 𝑋(𝑡𝑘), 𝑊𝑘 ≔ 𝑊(𝑡𝑘), and let {𝑉𝑡 : 𝑡 ≥ 0} be a
stochastic process such that Δ𝑉𝑘 = 𝑉𝑡𝑘+1

− 𝑉𝑡𝑘
= 𝑊𝑘Δ𝑡𝑘. Then, † simplifies

𝑋𝑘+1 − 𝑋𝑘 = 𝑏(𝑡𝑘, 𝑋𝑘)Δ𝑡𝑘 + 𝜎(𝑡𝑘, 𝑋𝑘)Δ𝑉𝑘. ‡

In this “discrete setting”, it turns out that the only stochastic process 𝑉𝑡 that has the
properties such as to satisfy those of 𝑊𝑡 above is Brownian motion!

Applying ‡ repeatedly, we find

𝑋𝑘 = 𝑋0 + ∑
𝑘−1

𝑗=0
𝑏(𝑡𝑗, 𝑋𝑗)Δ𝑡𝑗 + ∑

𝑘−1

𝑗=0
𝜎(𝑡𝑗, 𝑋𝑗)Δ𝐵𝑗.

Letting Δ𝑡 → 0 in some appropriate way and 𝑘 = 𝑚, the first summation should
converge to ∫𝑡

0
𝑏(𝑠, 𝑋𝑠) d𝑠, so heuristically the second should converge to

“∫𝑡
0

𝜎(𝑠, 𝑋𝑠) d𝐵𝑠”. With this as motivation, we now define ∫𝑡
0

𝑓 d𝐵𝑡 as the limit of this
summation behaviour in a proper sense, for a class of functions 𝑓 .

We’ll do this in a manner very similar to the typical construction of the Lebesgue
integral. We begin by defining the integral for so-called “simple functions”, then for
continuous functions by approximation with simple function, then for bounded
functions via approximation with continuous functions. Fix times 𝑇 > 𝑆. We’ll define

𝘐[𝑓](𝜔) ≔ ∫
𝑇

𝑆
𝑓(𝑡, 𝜔) d𝐵𝑡(𝜔).

Note that this is a random variable in its own right!

We’ll tacitly assume some further technical assumptions on the functions we’ll define 𝘐[𝑓]
for; namely measurability of 𝑓  in the product space 𝔅[0,∞) × ℱ, the “adaptability” of 𝑓  to the
filtration ℱ𝑡 ≔ 𝜎({𝐵𝑖(𝑠) : 1 ≤ 𝑖 ≤ 𝑛

0 ≤ 𝑠 ≤ 𝑡}), and the 𝐿2([𝑆, 𝑇 ])-norm of 𝑓  is finite on average.

Step 1: We call 𝜑 a simple function if it is of the form

𝜑(𝑡, 𝜔) = ∑
𝑗

𝑒𝑗(𝜔)𝟙[𝑡𝑗, 𝑡𝑗+1)(𝑡),

7



with 𝑒𝑗(𝜔) a function of only 𝜔, 𝟙[𝑡𝑗, 𝑡𝑗+1) the indicator function of the interval
[𝑡𝑗, 𝑡𝑗+1), and the sum is over a finite partition {𝑡𝑗} of [𝑆, 𝑇 ]. Then, simply define

𝘐(𝜑)(𝜔) ≔ ∑
𝑗

𝑒𝑗(𝜔)(𝐵𝑡𝑗+1
− 𝐵𝑡𝑗

)(𝜔).

Note that we choose to take the value 𝑒𝑗(𝜔) on the “interval” 𝐵𝑡𝑗+1
− 𝐵𝑡𝑗

, i.e. the left-hand
value. This is somewhat arbitrary, but turns out to be the right choice in ultimately
constructing the “Itô integral”. Another option (common in physics) is to take the midpoint
over the interval, 𝑒𝑗+1+𝑒𝑗

2 . This leads to what is called the “Stratanovich integral”. This choice
fundamentally changes the properties that we will develop to follow.

We promptly have the following important identity that will motivate how to
proceed, and is perhaps the most important theorem in the theory of Itô Calculus:

Theorem 1 (Itô Isometry) :

𝔼
⎣
⎢
⎡(∫

𝑇

𝑆
𝜑(𝑡, 𝜔) d𝐵𝑡)

2

⎦
⎥
⎤ = 𝔼[∫

𝑇

𝑆
𝜑2(𝑡, 𝜔) d𝑡]

That is to say, the 𝐿2(ℙ) norm of the Itô integral of 𝜑 is equal to the expected value
of 𝐿2([𝑆, 𝑇 ]) norm of 𝜑.

Proof :  Put Δ𝐵𝑗 = 𝐵𝑡𝑗+1
− 𝐵𝑡𝑗

. Then, by properties of Brownian motion, Δ𝐵𝑖

and Δ𝐵𝑗 are independent, and thus

𝔼[𝑒𝑖𝑒𝑗Δ𝐵𝑖Δ𝐵𝑗] =
⎩{
⎨
{⎧𝔼[𝑒2

𝑖 ]𝔼[(Δ𝐵𝑖)
2] if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
= {

𝔼[𝑒2
𝑖 ](𝑡𝑖+1 − 𝑡𝑖) if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
.

So,

𝔼[(∫ 𝜑 d𝐵)
2

] = 𝔼
⎣
⎢
⎡(∑

𝑗
𝑒𝑗Δ𝐵𝑗)

2

⎦
⎥
⎤

= 𝔼[∑
𝑖,𝑗

𝑒𝑖𝑒𝑗Δ𝐵𝑖Δ𝐵𝑗]

= ∑
𝑖,𝑗

𝔼[𝑒𝑖𝑒𝑗Δ𝐵𝑖Δ𝐵𝑗]

= ∑
𝑖

𝔼[𝑒2
𝑖 (𝑡𝑖+1 − 𝑡𝑖)]

= 𝔼[∑
𝑖

𝑒2
𝑖 (𝑡𝑖+1 − 𝑡𝑖)] = 𝔼[∫ 𝜑2 d𝑡].
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□

Step 2: Define 𝘐[𝑔] for continuous and bounded functions.

Theorem 2 : Let 𝑔 be bounded and continuous. Then, there exists a sequence of step
functions 𝜑𝑛 such that ∫𝑇

𝑆
(𝑔 − 𝜑𝑛)2 d𝑡 → 0 as 𝑛 → ∞.

Proof :  For each 𝑛 ≥ 1, let {[𝑡𝑗, 𝑡𝑗+1)} be a partition of [𝑆, 𝑇 ] with the property
that |𝑡𝑗+1 − 𝑡𝑗| < 1

𝑛  for each 𝑗. Then define

𝜑𝑛(𝜔) ≔ ∑
𝑗

𝑔(𝑡𝑗, 𝜔) ⋅ 𝟙[𝑡𝑗, 𝑡𝑗+1)(𝑡);

in particular, 𝜑𝑛 takes the value of 𝑔 on the left endpoint of each interval. Then,
the continuity of 𝑔 immediately gives ∫𝑇

𝑆
(𝑔(𝑡, 𝜔) − 𝜑𝑛(𝑡, 𝜔))2 d𝑡 → 0 for every 𝜔

so in particular

𝔼[∫
𝑇

𝑆
(𝑔(𝑡, 𝜔) − 𝜑𝑛(𝑡, 𝜔))2 d𝑡] → 0, 𝑛 → ∞.

□

Step 3: Approximate bounded functions with continuous functions; this is identical
to the previous step.

For any bounded function 𝑓 , then, we can approximate 𝑓  with step functions, say
{𝜑𝑛}, such that 𝔼[∫𝑇

𝑆
(𝑓 − 𝜑𝑛)2 d𝑡] → 0. With the Itô isometry as motivation, then,

define the Itô integral of 𝑓  as

𝘐[𝑓](𝜔) ≔ lim
𝑛→∞

∫
𝑇

𝑆
𝜑𝑛(𝑡, 𝜔) d𝐵𝑡

with the limit taken in 𝐿2(ℙ). We immediately see two possible problems with this
definition:

1. Does this limit even exist?
2. Is it unique?

To answer 1., note that by Itô Isometry (for simple functions), for any 𝑛, 𝑚 ≥ 1, we
have
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𝔼
⎣
⎢
⎡(∫

𝑇

𝑆
𝜑𝑛 d𝑊𝑡 − ∫

𝑇

𝑆
𝜑𝑚 d𝑊𝑡)

2

⎦
⎥
⎤ = 𝔼[∫

𝑇

𝑆
(𝜑𝑛 − 𝜑𝑚)2 d𝑡]

= 𝔼[‖𝜑𝑛 − 𝜑𝑚‖𝐿2([𝑆,𝑇 ])]

≤ 𝔼[‖𝜑𝑛 − 𝑓‖𝐿2([𝑆,𝑇 ])] + 𝔼[‖𝑓 − 𝜑𝑚‖𝐿2([𝑆,𝑇 ])].

By construction, 𝜑𝑛 → 𝑓  in 𝐿2([𝑆, 𝑇 ]), so each of these two expectation terms can be
made arbitrary small for large 𝑛, 𝑚. Then, in particular, {∫𝑇

𝑆
𝜑𝑛 d𝑊𝑡} forms a Cauchy

sequence in 𝐿2(ℙ). This space is complete, and thus the limit indeed exists in 𝐿2(ℙ).

To answer 2., suppose we take two different sequences 𝜑𝑛, 𝜓𝑛 such that
𝔼[∫ (𝑓 − 𝜑𝑛)2 d𝑡], 𝔼[∫ (𝑓 − 𝜓𝑛)2 d𝑡] both converge to zero. Then, following identical
work as in addressing 1.,

𝔼[(∫|𝜑𝑛 − 𝜓𝑛| d𝑊𝑡)
2

] = 𝔼[∫ (𝜑𝑛 − 𝜓𝑛)2 d𝑡]

≤ 𝔼[∫ (𝜑𝑛 − 𝑓)2 d𝑡] + 𝔼[∫ (𝜓𝑛 − 𝑓)2] →
𝑛→∞

0.

In particular, ∫|𝜑𝑛 − 𝜓𝑛| d𝑊𝑡 → 0 in 𝐿2(ℙ) from which it follows lim𝑛 ∫ 𝜑𝑛 d𝑊𝑡 =
lim𝑛 ∫ 𝜓𝑛 d𝑊𝑡, so the limit indeed unique.

Thus, we’ve developed a manner of interpreting integrating a function against a
stochastic process. But how do we actually compute this? And more importantly,
what’s the connection to SDEs?

First, we can rewrite † in “integral form” (by formally multiplying both sides by d𝑡)

d𝑋𝑡 = 𝑏 d𝑡 + 𝜎𝑊𝑡 d𝑡.

Integrating with respect to d𝑡 from 0 to 𝑡, we find

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑠, 𝜔) d𝑠 + " ∫

𝑡

0
𝜎(𝑠, 𝜔)𝑊𝑡 d𝑡".

To properly make sense of the integral on the right, we need to have some manner of
integrating against 𝑊𝑡 and d𝑡. Recall that in our earlier formulation, we never worked
with 𝑊𝑡 directly, but rather with “discretized steps” of it, namely we found that in
some formal sense,

"Δ𝐵𝑘 = 𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

= 𝑊𝑘Δ𝑡𝑘."

Dividing both sides by Δ𝑡𝑘, and taking Δ𝑡𝑘 → 0, we are inspired to formally write
that 𝑊𝑡 is the derivative with respect to time of 𝐵𝑡; that is,
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"𝑊𝑡 =
d𝐵𝑡
d𝑡

", "White noise is the derivative of Brownian motion."

One should be sure to understand that this is a purely heuristic notion, hence the quotation
marks. Indeed, one can show that the sample paths 𝑡 ↦ 𝐵𝑡 derived from Brownian motion are
almost surely nowhere differentiable, so this statement doesn’t even make sense in a fixed-time
point of view. Nonetheless, it is still a useful mental image if nothing else.

From here, our integral formula becomes

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑠, 𝜔) d𝑠 + " ∫

𝑡

0
𝜎(𝑠, 𝜔)

d𝐵𝑡
d𝑡

⋅ d𝑡".

In short, then, we have good reason to accept the right-hand integral as the Itô
integral of 𝜎(𝑠, 𝜔) on [0, 𝑡]! With this as motivation, we make the following formal
definition:

Definition 6 (Itô Process) :  Let 𝐵𝑡 be the standard 1-dimensional Brownian
motion on a probability space (Ω, ℱ, ℙ). Then, an Itô Process on (Ω, ℱ, ℙ) is a
stochastic process {𝑋𝑡 : 𝑡 ≥ 0} of the form

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑢(𝑠, 𝜔) d𝑠 + ∫

𝑡

0
𝑣(𝑠, 𝜔) d𝐵𝑠,

where 𝑢, 𝑣 subject to certain technical conditions (of note: the 𝐿2([0, 𝑡]) (resp.
𝐿1([0, 𝑡]))-norm of 𝑣(𝑡, 𝜔) (resp. 𝑢(𝑡, 𝜔)) is finite for every 𝑡 ≥ 0 almost surely)
and ∫𝑡

0
(⋯) d𝐵𝑡 the Itô integral of 𝑣. We’ll typically denote such a process in the

concise (and suggestive) formulation

d𝑋𝑡 = 𝑢 d𝑡 + 𝑣 d𝐵𝑡.

Thus, we finally have a concrete way of speaking of our SDE †; namely, given such an
equation, we’ll say that 𝑋𝑡 a solution if it is an Itô process with 𝑢 = 𝑏, 𝑣 = 𝜎.

All of this has been fairly formal, and we have no real manner of algebraically
manipulating such formulas yet. The following lemma, which can be thought of as a
sort of “chain rule”, will be crucial in this direction:
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Theorem 3 (Itô's Lemma):  Let 𝑔 ∈ 𝐶2([0, ∞), ℝ). Then, if 𝑌𝑡 a stochastic process
defined by 𝑌𝑡 = 𝑔(𝑡, 𝑋𝑡), then

d𝑌𝑡 =
𝜕𝑔
𝜕𝑡

(𝑡, 𝑋𝑡) d𝑡 +
𝜕𝑔
𝜕𝑥

(𝑡, 𝑋𝑡) d𝑋𝑡 +
1
2

𝜕2𝑔
𝜕𝑥2 (𝑡, 𝑋𝑡)(d𝑋𝑡)

2,

where we compute using the rules

(d𝑡)2 = d𝐵𝑡 ⋅ d𝑡 = d𝑡 ⋅ d𝐵𝑡 = 0, d𝐵𝑡 ⋅ d𝐵𝑡 = d𝑡.

Proof :  This is essentially fancy Taylor expanding, and observing which terms go
to zero. Fix 𝑡 > 0. We’ll assume that 𝑢, 𝑣 are simple functions; for general 𝑢, 𝑣,
we can approximate by simple functions and take limits to arrive to the final
formula. Take a partitioning of [0, 𝑡] given by {𝑡𝑗}

𝑁
𝑗=1

, and denote Δ𝑡𝑗 = 𝑡𝑗+1 −
𝑡𝑗, Δ𝑋𝑗 = 𝑋𝑡𝑗+1

− 𝑋𝑡𝑗
. Then, we find

𝑔(𝑡, 𝑋𝑡) = 𝑔(0, 𝑋0) + ∑
𝑗

𝜕𝑔
𝜕𝑡

Δ𝑡𝑗 + ∑
𝑗

𝜕𝑔
𝜕𝑥

Δ𝑋𝑗 (𝒪(1) terms)

+
1
2

∑
𝑗

𝜕2𝑔
𝜕𝑡2

(Δ𝑡𝑗)
2 + ∑

𝑗

𝜕2𝑔
𝜕𝑡𝜕𝑥

(Δ𝑡𝑗)(Δ𝑋𝑗) +
1
2

∑
𝑗

𝜕2𝑔
𝜕𝑥2 (Δ𝑋𝑗)

2 (𝒪(2) terms)

+ ∑
𝑗

𝑅𝑗,

where in each summation the 𝜕𝑔 terms are evaluated at (𝑡𝑗, 𝑋𝑡𝑗
), and the

remainder term(s) 𝑅𝑗 = ℴ(|Δ𝑡𝑗|
2 + |Δ𝑋𝑗|2), by Taylor’s theorem, and will in

particular go to zero as Δ𝑡𝑗 → 0. Moreover, the first two terms will converge to
∫𝑇

0
𝜕𝑔
𝜕𝑡 (𝑠, 𝑋𝑠) d𝑠, ∫𝑇

0
𝜕𝑔
𝜕𝑥(𝑠, 𝑋𝑠) d𝑋𝑠 respectively. For the 𝒪(2) terms, we know that

since 𝑢, 𝑣 simple,

(Δ𝑋𝑗)
2 = 𝑢2

𝑗(Δ𝑡𝑗)
2 + 2𝑢𝑗𝑣𝑗(Δ𝑡𝑗)(Δ𝐵𝑗) + 𝑣2

𝑗(Δ𝐵𝑗)
2,

where 𝑢𝑗, 𝑣𝑗 correspond to 𝑢, 𝑣 evaluated at 𝑡𝑗. Thus, the third 𝒪(2) term
becomes

∑
𝑗

𝜕2
𝑥𝑔(Δ𝑋𝑗)

2 = ∑
𝑗

𝜕2
𝑥𝑔𝑢2

𝑗(Δ𝑡𝑗)
2 + ∑

𝑗
𝜕2

𝑥𝑔(Δ𝑡𝑗)(Δ𝐵𝑗) + ∑
𝑗

𝜕2
𝑥𝑔𝑣2

𝑗(Δ𝐵𝑗)
2.

Because of the Δ𝑡2𝑗  term in the first term and the fact that 𝔼[(Δ𝐵𝑗)
2] = Δ𝑡𝑗, it’s

not hard to show that the first two terms converge to 0 as Δ𝑡𝑗 → 0. The last
term, perhaps surprisingly, converges to ∫ 𝜕2

𝑥𝑔𝑣2 d𝑠 (namely, it loses all
dependence on the Brownian motion)! The crucial computation to show this is
as follows. Put 𝑎(𝑡) = 𝜕2

𝑥𝑔(𝑡)𝑣2(𝑡) and so 𝑎𝑗 ≔ 𝑎(𝑡𝑗). Then,
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𝔼
⎣
⎢
⎡(∑

𝑗
𝑎𝑗(Δ𝐵𝑗)

2 − ∑
𝑗

𝑎𝑗Δ𝑡𝑗)
2

⎦
⎥
⎤ = ∑

𝑖,𝑗
𝔼[𝑎𝑖𝑎𝑗((Δ𝐵𝑖)

2 − Δ𝑡𝑖)((Δ𝐵𝑗)
2 − Δ𝑡𝑗)]

by independence = ∑
𝑗

𝔼[𝑎2
𝑗((Δ𝐵𝑗)

2 − Δ𝑡𝑗)
2
]

= ∑
𝑗

𝔼[𝑎2
𝑗]𝔼[(Δ𝐵𝑗)

4 − 2(Δ𝐵𝑗)
2Δ𝑡𝑗 + (Δ𝑡𝑗)

2]

= 2 ∑
𝑗

𝔼[𝑎2
𝑗](Δ𝑡𝑗)

2 →
Δ𝑡𝑗→0

0.

Since the second term in the original expectation → ∫ 𝑎2 d𝑠, this completes the
proof of the claimed convergence. A similar argument gives that the other two
𝒪(2) terms → 0 as Δ𝑡𝑗 → 0. So, in all, we’ve shown that in the limit as Δ𝑡𝑗 → 0,

𝑔(𝑡, 𝑋𝑡) = 𝑔(0, 𝑋0) + ∫
𝑇

0
𝜕𝑡𝑔(𝑠, 𝑋𝑠) d𝑠 + ∫

𝑇

0
𝜕𝑥𝑔(𝑠, 𝑋𝑠) d𝑋𝑠 +

1
2

∫
𝑇

0
𝜕2

𝑥𝑔(𝑠, 𝑋𝑠) d𝑠

□

We should, really, be as little more careful in all of our limit taking. Specifically, we aren’t
always explicit with what metric we are taking our limits with respect to, because usually its
clear from context.

The last result we showed, people like to summarize by writing “(d𝐵𝑡)
2 = d𝑡”. This is,

again, a nonsensical thing to write, but is a helpful heuristic.

3 Stochastic Differential Equations

Unfortunately, it’s typically hard to actually find explicit solutions to most SDEs of
the form we’ve considered here (much like in the case of ODEs!). However, as in the
ODE case, we have a existence and uniqueness theorem, which we present in one-
dimension for simplicity:
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Theorem 4 (Existence and Uniqueness for Scalar SDEs):  Let 𝑇 > 0, and 𝑏, 𝜎 :
[0, 𝑇 ] × ℝ → ℝ be measurable functions such that

|𝑏(𝑡, 𝑥)| + |𝜎(𝑡, 𝑥)| ≤ 𝐶(1 + |𝑥|)

for every 𝑥 ∈ ℝ, 𝑡 ∈ [0, 𝑇 ] for some constant 𝐶, and

|𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑦)| + |𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)| ≤ 𝐷|𝑥 − 𝑦|

for every 𝑥, 𝑦 ∈ ℝ, 𝑡 ∈ [0, 𝑇 ] for some constant 𝐷. Let 𝑍 be a random variable with
distribution independent of the Brownian motion {𝐵𝑠 : 𝑠 ≥ 0} and such that
𝔼[|𝑍|2] < ∞. Then, the SDE

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡) d𝑡 + 𝜎(𝑡, 𝑋𝑡) d𝐵𝑡, 𝑡 ∈ [0, 𝑇 ], 𝑋0 = 𝑍

admits a unique, time-continuous solution 𝑋𝑡(𝜔) with the property that

𝔼[∫
𝑇

0
|𝑋𝑡|2 d𝑡] < ∞.

Just as in the ODE case, its easy to construct SDEs that violate these conditions and admit
multiple solutions. For instance, d𝑋𝑡

d𝑡 = 3𝑋2/3
𝑡 , 𝑋0 = 0 has an infinite number of solutions

given by {
0 𝑡≤𝑎

(𝑡−𝑎)3𝑡>𝑎
 for any 𝑎 > 0.

Proof :  We provide just a sketch. For existence, define a sequence of stochastic
process by 𝑌 0

𝑡 = 𝑋0 and inductively for 𝑘 ≥ 0,

𝑌 (𝑘+1)
𝑡 = 𝑋0 + ∫

𝑡

0
𝑏(𝑠, 𝑌 (𝑘)

𝑠 ) d𝑠 + ∫
𝑡

0
𝜎(𝑠, 𝑌 (𝑘)

𝑠 ) d𝐵𝑠.

One can then show

𝔼[|𝑌 (𝑘+1)
𝑡 − 𝑌 (𝑘)

𝑘 |2] ≤
𝐴𝑘+1𝑡𝑘+1

(𝑘 + 1)!
,

where 𝐴 a constant only dependent on 𝐶, 𝐷, 𝑇  and 𝔼[|𝑋0|2], all as given in the
statement. Thus, for any 𝑛, 𝑚 ≥ 1, one applies the triangle inequality to find
that

‖𝑌 (𝑚)
𝑡 − 𝑌 (𝑛)

𝑡 ‖
𝐿2(𝜆×ℙ)

≤ ∑
𝑚−1

𝑘=𝑛
(

𝐴𝑘+1𝑇 𝑘+2

(𝑘 + 2)!
)

1/2

,

where 𝜆 the Lebesgue measure on [0, 𝑇 ] and the 𝐿2(𝜆 × ℙ) norm is given by

‖𝑋𝑡‖𝐿2(𝜆×ℙ) ≔ 𝔼[∫
𝑇

0
|𝑋𝑡|2 d𝑡]

1/2

.
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This summation converges to zero as 𝑛, 𝑚 → ∞ hence {𝑌 (𝑚)
𝑡 } forms a Cauchy

sequence in 𝐿2(𝜆 × ℙ) and thus by completeness converges to some process 𝑋𝑡.
From here, it’s not hard to show that 𝑋𝑡 actually does satisfy the SDE in
question, then ensuring continuity is all that remains (this is a little tricky).

For uniqueness, suppose 𝑋𝑡, 𝑋𝑡 are two solutions. Then, one readily finds
that

𝔼[|𝑋𝑡 − 𝑋𝑡|2] ≤ 3(1 + 𝑡)𝐷2 ∫
𝑡

0
𝔼[|𝑋𝑠 − 𝑋𝑠 |2] d𝑠,

so if we define 𝑣(𝑡) ≔ 𝔼[|𝑋𝑡 − 𝑋𝑡|2], we find that there exists a constant 𝐴
independent of time such that

𝑣(𝑡) ≤ 𝐴 ∫
𝑡

0
𝑣(𝑠) d𝑠

for all 0 ≤ 𝑡 ≤ 𝑇 . By the Gronwall Lemma, then, 𝑣(𝑡) ≤ 𝐹 ⋅ exp(𝐴𝑡) where 𝐹 =
𝑣(0) = 𝔼[|𝑋0 − 𝑋0|2] = 0; hence, 𝑣(𝑡) = 0 hence 𝑋𝑡 = 𝑋𝑡 for a.e. 𝑡 ∈ [0, 𝑇 ]. □

Let’s actually solve an equation. We consider, in Itô process formulation,

d𝑁𝑡 = 𝑟𝑁𝑡 d𝑡 + 𝛼𝑁𝑡 d𝐵𝑡,

where 𝑟, 𝛼 are constants and 𝑁0 is specified. General solution methods are difficult,
but let’s try to take advantage of the Itô Lemma to guess and verify. Suppose

𝑔(𝑡, 𝑥) ≔ ln(𝑥).

Then

d(𝑔(𝑡, 𝑁𝑡)) = d(ln(𝑁𝑡)) =
1
𝑁𝑡

d𝑁𝑡 +
1
2
(−

1
𝑁2

𝑡
)(d𝑁𝑡)

2

=
d𝑁𝑡
𝑁𝑡

−
1

2𝑁2
𝑡
𝛼2𝑁2

𝑡 d𝑡

=
d𝑁𝑡
𝑁𝑡

−
1
2
𝛼2 d𝑡

⇒
d𝑁𝑡
𝑁𝑡

= d ln(𝑁𝑡) +
1
2
𝛼2 d𝑡.

So, we find that on the one hand,

∫
𝑡

0

d𝑁𝑠
𝑁𝑠

= 𝑟𝑡 + 𝛼𝐵𝑡

from the solution formula, while also
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∫
𝑡

0

d𝑁𝑠
𝑁𝑠

= ∫
𝑡

0
d ln(𝑁𝑠) + ∫

𝑡

0

1
2
𝛼2 d𝑠

= ln(𝑁𝑡) − ln(𝑁0) +
1
2
𝛼2𝑡

= ln(
𝑁𝑡
𝑁0

) +
1
2
𝛼2𝑡,

so equating these two we find

ln(
𝑁𝑡
𝑁0

) = (𝑟 −
1
2
𝛼2)𝑡 + 𝛼𝐵𝑡

⇒ 𝑁𝑡 = 𝑁0 exp((𝑟 − 1
2𝛼2)𝑡 + 𝛼𝐵𝑡)

Without the 𝐵𝑡 term in the original equation, we would have found solution

𝑁𝑡 = 𝑁0 exp(𝑟𝑡).

Generally, processes of the form

𝑋𝑡 = 𝑋0 exp(𝜇𝑡 + 𝛼𝐵𝑡)

for constants 𝜇, 𝛼 are called “geometric Brownian motion”. A sample path:

Figure 2: A (simulated) instance of geometric Brownian motion with 𝜇 = 𝛼 = 1.

How much of an “effect” does the noise term have on the solution? Let us compute
the “average location” of the solution at a given time 𝑡; i.e., the expected value of 𝑁𝑡.
Assuming 𝑁0 is independent of 𝐵𝑡 for all time, we can write
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𝔼[𝑁𝑡] = 𝔼[𝑁0]𝔼[exp((𝑟 −
1
2
𝛼2)𝑡 + 𝛼𝐵𝑡)]

= 𝔼[𝑁0] ⋅ exp((𝑟 −
1
2
𝛼2)𝑡)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
deterministic

𝔼[exp(𝛼𝐵𝑡)].

From our earlier construction, we know 𝐵𝑡 ∼ 𝒩(0, 𝑡), so we can directly compute this
last term using the formula for the pdf of such a distribution:

𝔼[exp(𝛼𝐵𝑡)] =
1

√
2𝜋𝑡

∫
ℝ

exp(𝛼𝑥) exp(−
1
2𝑡

𝑥2) d𝑥

=
1

√
2𝜋𝑡

∫
ℝ

exp(−
1
2𝑡

{𝑥2 − 2𝑡𝛼𝑥}) d𝑥

=
1

√
2𝜋𝑡

∫
ℝ

exp(−
1
2𝑡

{(𝑥 − 𝑡𝛼)2 − 𝑡2𝛼2}) d𝑥

=
1

√
2𝜋𝑡

exp(
𝑡𝛼2

2
) ∫

ℝ
exp(−𝑢2)

√
2𝑡 d𝑢

=
1

√
2𝜋𝑡

√
2𝜋𝑡 exp(

𝑡𝛼2

2
) = exp(

𝑡𝛼2

2
).

Hence, bringing everything back together,

𝔼[𝑁𝑡] = 𝔼[𝑁0] exp(𝑟𝑡).

But this is precisely the formula we had for the deterministic case. In summary, while
we have a different solution “pointwise” in the stochastic framework, the “average
solution” is identical to the deterministic one.

Figure 3: 𝑁𝑡 (with 𝑟 = 1), deterministic situation (i.e. 𝛼 = 0) in red, 3 instances of
stochastic solution (with 𝛼 = 1) in purple, blue, magenta.
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