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My research this past summer aimed at characterizing conservation laws of differ-
ence equations arising from differential equations, and their relationship to smooth
conservation laws. Ultimately, the goal of such a characterization was to better under-
stand admissible discretizations of differential equations that yield consistent and con-
servative numerical methods, which naturally have many desirable qualities [1–3]. This
process began with reviewing the analogous theory for differential equations, which
relies heavily on differential-geometric formalism [4, 5]. The translation of this theory to
the discrete world and difference equations was the main “novel” portion of my work,
and began largely by consolidating similar attempts [6–10].

1. Conservation Laws of Differential Equations
A conservation law of a (ordinary or partial) differential equation 𝐹[𝒙, 𝒖] ≔

𝐹(𝑥1,…, 𝑥𝑝; 𝑢1,…, 𝑢𝑞; 𝑢𝛼𝑥𝑖 ; ⋯) = 0 in 𝑝 independent and 𝑞 dependent variables is a func-
tion 𝜑[𝒙, 𝒖] that is identically constant on solutions to 𝐹 ; in other words

(Div 𝜑)|𝐹=0 = 0. (1)
Classical examples include conservation of mass, energy, momentum, and other physi-
cal quantities arising in physical systems. For instance, the classical Hamiltonian system
in generalized coordinates with energy 𝐻 = 𝐻(𝑝, 𝑞),
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⎞, (2)

has 𝐻  as a conserved quantity
Div 𝐻 |𝐹=0 = [ ̇𝑝 · 𝜕𝑝𝐻 + ̇𝑞 · 𝜕𝑞𝐻]|𝐹=0 = −𝜕𝑞𝐻 · 𝜕𝑝𝐻 + 𝜕𝑞𝐻 · 𝜕𝑝𝐻 = 0. (3)

The study of conservation laws is frequently used to study various properties of differ-
ential equations.

Under appropriate assumptions of nondegeneracy of 𝐹 , domain, etc., every conser-
vation law can be written in characteristic form

Div 𝜑 = Λ · 𝐹 , (4)
where Λ[𝒙, 𝒖] is the characteristic or multiplier of 𝜑 [4]; for instance, the conservation
law multiplier for 𝐻  of Equation 2 is given by Λ = (𝐻𝑞 𝐻𝑝). Hence, finding conserva-
tion laws for 𝐹  amounts to finding functions Λ such that Λ · 𝐹  is a divergence term.

To this end, we introduce the Euler operator for the dependent variable 𝑢𝛼

ℰ𝛼 ≔∑
𝐼
(−𝐷)𝐼

𝜕
𝜕𝑢𝛼𝐼

, (5)

where the summation is over all multiindices 𝐼 = (𝑖1,…, 𝑖𝑘) with 0 ≤ 𝑖𝑗 ≤ 𝑝, 𝑘 ≥ 0; we
define ℰ = (ℰ1,…, ℰ𝑞). Those familiar with the calculus of variations will recognize this
operator as yielding determining (necessary, not sufficient) equations for extremals of
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variational problems. For our purposes, the real interest in this operator is in the char-
acterization of its kernel (see [4]),

ker ℰ = {𝐿 : 𝐿 = Div 𝑃}, (6)
that is, the kernel of ℰ is composed precisely of divergence terms. Hence, taking ℰ of
both sides of Equation 4, we have that

ℰ(Λ · 𝐹) = 0, (7)
and thus finding conservation law multipliers for 𝐹  amounts to solving the differential
equation arising from the Euler-Langrange equations for Λ · 𝐹  for Λ (see for instance
[11] for examples); to study conservation laws, we study the Euler operator.

The Euler operator arises intrinsically as one of the operators (more precisely, as the
composition of a quotient map and a “vertical” exterior derivative) in the variational
bicomplex, a framework from differential geometry used to study variational calculus
on abstract spaces [5]. While the rest of the complex is worth studying in its own right,
the most notable (for our purposes) is the component known as the Euler-Lagrange
complex (or “variational complex” in [4])

Figure 1. The Euler-Lagrange Complex

where 𝐸𝑠 ≔ Ω𝑝,𝑠/ im{d𝐻 : Ω𝑝−1,𝑠 → Ω𝑝,𝑠} are the relevant cohomology vector spaces.
Without getting too into the details, this structure is analogous to the de Rham complex
for functions on a manifold, but for differential equations viewed as smooth functions
on the infinite jet bundle of a fibered manifold (which we typically take to be a trivial
fiber 𝜋 : ℝ𝑝 ×ℝ𝑞 → ℝ𝑝 for simplicity); the vertical derivative d𝑉  corresponds to partial
differentiation with respect to the dependent variables 𝒖, and the horizontal derivative
d𝐻  corresponds to total differentiation with respect to the independent variables 𝒙. This
results in a vertically unbounded and horizontally bounded (by the dimension of the
independent variables) bicomplex; we denote in brief {Ω𝑖,𝛼; d𝑉 , d𝐻}.

A complex is exact if d𝜔 = 0 if any only if 𝜔 =d𝜂 for some appropriate form 𝜂. Exact-
ness at the Ω𝑝−1,0 →

d𝐻
Ω𝑝,0 →

ℰ
𝐸1 (where ℰ = 𝜋1 ∘ d𝑉 ) is equivalent, in this framework,

to the characterization of the kernel of the Euler operator given by Equation 6. In short,
studying this complex, its exactness, and its overall structure is vital to understanding
conservation laws of differential equations. We seek to create a similar complex in the
discrete case of difference equations to study discrete conservation laws.
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2. Conservation Laws of Difference Equations
A difference equation is an equation involving independent lattice variables 𝒏 =

(𝑛1,…, 𝑛𝑝) ∈ 𝕃𝑝, unknown dependent variables 𝒖𝒏 = (𝑢1𝒏,…, 𝑢𝑞𝒏), and finitely many
shifts 𝒖𝒏+𝒎:

𝐹[𝒏,𝒖𝒏] ≔ 𝐹(𝒏;𝒖𝒏,…, 𝒖𝒏+𝒎) = 0. (8)
Solving a difference equations then amounts to finding a 𝕃-indexed real-valued se-
quence {𝑢𝛼𝒏}𝒏∈𝕃 for each 𝛼 = 1,…, 𝑞. These arise naturally in finite difference discretiza-
tions of difference equations, though we take the lead of [8, 6] of omitting explicit ref-
erence to any continuum limit until necessary (also allowing for consideration of more
general difference equations).

A conservation law of a difference equation is a function 𝜑[𝒏,𝒖𝒏] that is constant on
solutions to 𝐹 , or equivalently,

(𝚫𝜑)|𝐹=0 =∑
𝑝

𝑖=1
Δ𝑖𝜑|𝐹=0 =∑

𝑝

𝑖=1
(𝑆1𝑖 − id)𝜑|𝐹=0 = 0, (9)

where 𝑆𝑗𝑖  denotes the shift operator by a shift 𝑗 in the coordinate 𝑖; ie

𝑆𝑗𝑖 : 𝕃 → 𝕃, (𝑛1,…, 𝑛𝑖,…, 𝑛𝑝) ↦ (𝑛1,…, 𝑛𝑖 + 𝑗,…, 𝑛𝑝). (10)

We can again speak of characteristics of conservation laws here,
𝚫𝜑 = Λ · 𝐹 , (11)

and we additionally have a discrete Euler operator

̂ℰ𝛼 = ∑
|𝐼| =𝑝

𝑆−𝐼
𝜕
𝜕𝑢𝛼𝐼

, (12)

where 𝑆−𝐼 = 𝑆−(𝑖1,…,𝑖𝑝) = 𝑆−𝑖11 ⋯𝑆−𝑖𝑝𝑝 , with the characterization of its kernel (see [12]
for a direct proof, or [8] for an “intrinsic” proof)

ker ̂ℰ = {𝐿 : 𝐿 = 𝚫𝑃}; (13)
one can find conservation laws by solving the “discrete Euler equations” for Λ · 𝐹  [13,
14].

Both [6] and [8] construct discrete analogs to the variational bicomplex (with the
former only considering the outer Euler-Lagrange complex) with the discrete Euler op-
erator serving the same role; in this case vertical differentiation corresponds to partial
differentiation in the independent variables 𝑢𝛼𝑖 , and horizontal differentiation corre-
sponds to the finite difference operators Δ𝑖. We denote the discrete variational bicom-
plex {Ω̂𝑖,𝛼; ̂d𝑉 , ̂d𝐻} to distinguish from the smooth.

3. Novel Work and Future Directions
The constructions of [6] and [8] are quite different in their approaches and a lot of

time was spent consolidating them. In short, while the general complexes are compat-
ible, the underlying algebra of functions in the former is far larger (in my opinion, too
large to be practically useful), containing as a subalgebra the functions considered in the
latter. Moreover, the notation, while not a major issue, varied widely. For instance, Hy-
don considers difference equations as in Equation 8, namely, the reliance on the depen-
dent variables is explicitly tied to the dependence on the independent variable 𝒏; upon
changing 𝒏, the specific 𝑢𝒏 considered in the function also changes. On the other hand,
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Zhanirov allows the dependence on the two “types” of inputs to vary independently.
The two, however, are identical under the change of variables (𝒏, 𝒖) ↦ (𝒏, 𝑆𝒏𝒖). It is
often easier to work in the variables of Zhanirov for the sake of technical proofs, but in
that of Hydon for practical applications.

Another notable difference between the two complexes is in the proof of exactness.
While the complex of Hydon is more practical, exactness is claimed, not proven. I have
independently proven it, using techniques as outlined in [8], [4], but the proof would
be too long (and not too interesting; it is largely computational) for inclusion here.

Exactness of the inner rows of the complex is yet to be resolved and is subject to
further investigation. Proofs of exactness of complexes (say, {Ω•, d•}) tend to involve
finding homotopy operators, linear maps

ℎ𝑘 : Ω𝑘 → Ω𝑘−1 (14)
such that for any 𝜔 ∈ Ω𝑘,

𝜔 = ℎ𝑘+1(d𝑘𝜔) + d𝑘−1(ℎ𝑘𝜔); (15)
if d𝑘𝜔 = 0, then by linearity of ℎ𝑘, 𝜔 = d𝑘−1(ℎ𝑘𝜔) and ℎ𝑘(𝜔) gives the preimage of 𝜔,
hence proving exactness. The relevant homotopy operators in the proof of exactness
of the inner rows of the smooth variational bicomplex as presented in [5] require the
notion of contact forms, which (as [8] notes as well) is not a clear task in this context.
Hence, it is not currently clear how to proceed in proving exactness of the inner rows
of the complex.

With the general framework in place, there are several questions that I am still work-
ing to answer.

The first involves discussing convergence of the discrete variational bicomplex. I
would like to be able to say that the discrete converges, in some sensible notion of con-
vergence, to the true variational bicomplex. While this seems reasonable, it has still yet
to be rigorously resolved. The issue in this sense lies mainly in properly defining what
we mean by convergence. Namely, the underlying spaces in the smooth, discrete com-
plexes are intrinsically different and hence the relevant function spaces are as well. One
idea for consolidation is to identify the discrete functions in Ω̂𝑖,𝛼 with piecewise poly-
nomials in Ω𝑖,𝛼. This clearly embeds the relevant function spaces, but doesn’t clearly
resolve the relationship between the differentiation operators ̂d𝑉 , ̂d𝐻  and d𝑉 , d𝐻 . No-
tably, the discrete complex is not a subcomplex of the smooth complex; mapping a dis-
crete function to a polynomial and differentiating is not equivalent, in general, to differ-
entiating first and then mapping to a polynomial. This is the major difference between
this approach and similar approaches to discretizing complexes in [15–17] where the
complex built is by construction a subcomplex of the smooth.

A second question, also involving convergence, relates to discrete conservation laws
of difference equations arising as discretizations of differential equations; namely, I’d
like to be able to describe admissible discretizations for differential equations such that
their discrete conservation laws are consistent with their smooth counterparts. This,
too, has yet to be resolved; indeed many authors ignore the continuum case in general.
We can summarize our ambitions pictorially
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Figure 2. Our “goal”: making this diagram commute

While the top (smooth) and bottom (discrete) rows of this diagram are well-understood,
the “F.D.” (finite difference) and “F.V.” (finite volume) connecting arrows are our cur-
rent areas of interest.

One current approach I have been taking is to try to develop more general discrete
Euler operators for arbitrary finite difference schemes. Namely, if

Δ =∑
𝑖∈ℤ
𝑐𝑖 · 𝑆𝑖 (16)

is an arbitrary finite difference operator where only finitely many constants 𝑐𝑖 are non-
zero, I would like to construct a corresponding Euler-type operator ℰΔ with kernel {𝐿 :
𝐿 = Δ𝑃} and (this is a less clear task) who’s image converges to that of the regular
Euler operator. The main idea used here is to mirror the “natural derivation” of the
Euler operator; the smooth Euler operator naturally arises after repeated integration
by parts and modding out by divergence terms, while the discrete Euler arises from
repeated summation by parts and modding out by forward differences 𝑆1 − id. Simi-
larly, when working with a more general Δ, we can sum by parts and reduce the typical
image of the operator 𝜋1 ∘ d𝑉  to a form in 𝐸1 that involves a constant, fixed number of
basis forms. Explicit formulae for the resulting Euler-type operators are then directly
computable. The question of convergence of these operators has not been resolved and
requires deeper investigation, but their derivation is novel.

Overall, this research project has so far yielded a deeper understanding of discrete
conservation laws. While my main goals have not yet been resolved, the constructions
made and proofs established have made the path forward far clearer than before.

~
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