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Contents

Motivating question: how can we use symmetries to work with
differential equations?

Given a solution, can we find a way to continuously map to other
solutions?
We will:

Describe a structure for describing continuous symmetries
State a requirement for a differential equation to admit a symmetry
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Discrete to Continuous Symmetries

D5

SO(2)
𝜃

Lie group: differentiable manifold with differentiable operation,
inversion.

⇝ Provides a structure for continuous symmetries

Ex) Planar rotations SO(2), reals R under addition
Manifold: looks "pretty close" to a subset of Rn : circle, sphere, torus, etc
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The Lie Algebra
On G live vector fields; functions that assign vectors to points.

v : M → TM

v|x = 𝜉1(x)𝜕x1 + · · · + 𝜉m(x)𝜕xm

Lie algebra of G : 𝔤 ..= {"group operation compatible" vector fields}
Vector fields give rise to flows: we denote exp(𝜀v)x

v|x =
d
d𝜀 exp(𝜀v)x

����
𝜀=0

exp(𝜀v)x = x + 𝜀𝜉(x) + 𝒪(𝜀2)

S1 q = (x , y)

TqS1

⇝ Linearized
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The Lie Algebra

𝔤
exp−→ G

We now have an algebraic means of working with our group.
We can replace non-linear conditions that arise from the group with

linear conditions in the algebra.

Rather than thinking of how a group operation behaves, we can think
of how the corresponding vector field "flows".

("Because working with a group is cursed" - William)
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SO(2): Vector Field of a Rotation

(x , y)
g𝜃
⇝ (x cos𝜃 − y sin𝜃, x sin𝜃 + y cos𝜃)

v|(x ,y) =
d
d𝜀 (x cos 𝜀 − y sin 𝜀, x sin 𝜀 + y cos 𝜀)

����
𝜀=0

= −y𝜕x + x𝜕y

Re-deriving the group operation:
dx
d𝜀 = −y ,

dy
d𝜀 = x =⇒ g𝜀 ,
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Extending to Differential Equations

⇝We can find the effect of a group transformation on a function by
"flowing" the function on v; we work on the space

(x , u) ∈ X × U = dependent × independent

x

u

f (x)

x̃

ũ

f̃ (x̃)g

Transforms functions, so transforms derivatives of functions - how?
Formally, we use "prolongation theory" and "prolonged vector fields"

pr(n)v = v +
p∑

i=1

𝜙x i
𝜕uxi + · · ·

defined over the "jet space" X × U(n) of X × U.
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Infinitesimal Criterion for Invariance

Theorem (Symmetry Condition)
For a differential equation Δ(x , u(n)) = 0 and group of transformations G, if
for every infinitesimal generator v of G,

pr(n)(v[Δ(x , u(n))]) = 0 whenever Δ(x , u(n)) = 0,

then G is a symmetry group of Δ; G maps solutions to other solutions.

⇝ If I flow a differential equation along a vector field, and the result
also satisfies the differential equation, then I have a symmetry of the

equation.
"Infinitesimal invariance criterion"
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An Aside: Noether’s Theorem

Theorem (Noether’s First Theorem)
If v generates a symmetry group of the variational problem L[u], then there
exists a corresponding conservation law of the Euler-Lagrange equations
ℰ(L) = 0.

⇝ Connection between symmetries and conservation laws

If we allow "generalized symmetries"

v =

p∑
i=1

𝜉i[u] +
q∑

i=1

𝜙i[u]

this becomes a one-to-one correspondance.
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The Heat Equation: Characterization of Symmetry
Groups

Given a differential equation Δ = 0, how do we find all symmetries of
the equation? We consider the heat equation

Δ(t , x , u(2)) = uxx − ut = 0,

and an arbitrary vector field

v = 𝜉(x , t , u)𝜕x + 𝜏(x , t , u)𝜕t + 𝜙(x , t , u)𝜕u ,

for which the infinitesimal invariance criterion (using prolongation) is

𝜙t = 𝜙xx .

We expand this to find a system of PDEs for the coefficients of the
vector fields v, and solve to find all independent vector fields.
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Heat Equation: Symmetry Groups
Ex)

v2 = 𝜕t ⇒ exp(𝜀v)(x , t , u) = (x , t + 𝜀, u), Time translation!
v4 = x𝜕x + 2t𝜕t ⇒ exp(𝜀v)(x , t , u) = (e𝜀x , e2𝜀t , u), Space-time scaling!

Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:Symmetries:
Gi exp(𝜀 · vi)(x , t , u) Physical Interpretation
1 (x + 𝜀, t , u) Space Translation
2 (x , t + 𝜀, u) Time Translation
3 (x , t , e𝜀u) Linearity (Constants)
4

(
e𝜀x , e2𝜀t , u

)
Space/Time Scaling

5
(
x + 2𝜀t , t , u · e−𝜀x−𝜀2t

)
Galilean Boost

6
( x
1 − 4𝜀t

,
t

1 − 4𝜀x
, u
√

1 − 4𝜀te
−𝜀x2
1−4𝜀t

)
?

𝛼 (x , t , u + 𝜀𝛼(x , t)) Linearity (Additivity)
Given a solution to Δ = 0, applying Gi to it yields another solution.
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Heat Equation: Fundamental Solution

Note that Δ(c) = 0 for any constant c.

Applying G6 with 𝜀 = 1 and then G2 with 𝜀 = −1
4 to u = c ..=

√
1
𝜋 we

have

c
G6
{

c√
1 + 4t

· exp
(
−x2

1 + 4t

)
G2
{

1√
4𝜋t

exp

{
−x2

4t

}
,

the fundamental solution of the heat equation.
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Conclusion

We:
Formalized continuous symmetries
Found infinitesimal invariance criterion for symmetry of
differential equations
Applied to the heat equation

⇝ Tools for describing symmetries of differential equations
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